Calculation of Invariant Manifolds of Piecewise-Smooth Maps
https://doi.org/10.21869/2223-1560-2020-24-3-166-182
Abstract
Purpose of reseach is of the work is to develop an algorithm for calculating stable invariant manifolds of saddle periodic orbits of piecewise smooth maps.
Method is based on iterating the fundamental domain along a stable subspace of eigenvectors of the Jacobi matrix calculated at a saddle periodic fixed point.
Results. A method for calculating stable invariant manifolds of saddle periodic orbits of piecewise smooth maps is developed. The main result is formulated as a statement. The method is based on an original approach to finding the inverse function, the idea of which is to reduce the problem to a nonlinear first-order equation.
Conclusion. A numerical method is described for calculating stable invariant manifolds of piecewise smooth maps that simulate impulse automatic control systems. The method is based on iterating the fundamental domain along a stable subspace of eigenvectors of the Jacobi matrix calculated at a saddle periodic fixed point. The method is based on an original approach to finding the inverse function, which consists in reducing the problem to solving a nonlinear first-order equation. This approach eliminates the need to solve systems of nonlinear equations to determine the inverse function and overcome the accompanying computational problems. Examples of studying the global dynamics of piecewise-smooth mappings with multistable behavior are given.
Keywords
About the Authors
Z. T. ZhusubaliyevRussian Federation
Zhanybai T. Zhusubaliyev, Dr. of Sci. (Engineering), Professor, Department of Computer Science
50 Let Oktyabrya str. 94, Kursk 305040
V. G. Rubanov
Russian Federation
Vasiliy G. Rubanov, Dr. of Sci. (Engineering), Professor, Department of Engineering Cybernetics
Kostyukov str. 46, Belgorod 308012
Yu. A. Gol’tsov
Russian Federation
Yuriy A. Gol’tsov, Senior Lecturer, Department of Engineering Cybernetics
Kostyukov str. 46, Belgorod 308012
References
1. Feudel U. Complex dynamics in multistable systems. Int. J. Bifurcation and Chaos, 2008, no. 18(6), pp. 1607–1626. https://doi.org/10.1142/S0218127408021233
2. Feudel U., Pisarchik A., Showalter K. Multistability and tipping: From mathematics and physics to climate and brain – Minireview and preface to the focus issue. Chaos, 2018, no. 28(3), 033501 p. https://doi.org/10.1063/1.5027718
3. Pisarchik A., Feudel U. Control of multistability. Phys. Rep, 2014, no. 540(4), pp. 167–218. https://doi.org/10.1016/j.physrep.2014.02.007
4. Hens C., Dana S., Feudel U. Extreme multistability: Attractor manipulation and robustness. Chaos, 2015, no. 25(10), pp. 053112. https://doi.org/10.1063/1.4921351
5. Prengel F., Wacker A., Schёoll E. Simple model for multistability and domain formation in semiconductor superlattices. Phys. Rev., 1994, no. 50, pp. 1705–1712. https://doi.org/10.1103/PhysRevB.50.1705
6. Liu Y., Chavez J. P. Controlling coexisting attractors of an impacting system via linear augmentation. Physica D., 2017, no. 348, pp. 1–11. https://doi.org/10.1016/j.physd.2017.02.018
7. Marmillot P., Kaufman M., Hervagault J-F. Multiple steady states and dissipative structures in a circular and linear array of three cells: Numerical and experimental approaches. J. Chem. Phys., 1991, no. 95(2), pp. 1206–1214. https://doi.org/10.1063/1.461151
8. Kuznetsov Y. Elements of Applied Bifurcation Theory, 3rd edition. Springer-Verlag, 2004. https://doi.org/10.1007/978-1-4757-3978-7
9. Mira C., Gardini L., Barugola A., Cathala J.C. Chaotic Dynamics in TwoDimensional Noninvertible Maps. World Scientific Publishing, Singapore, 1996, 632 p. https://doi.org/10.1142/2252
10. Frouzakis C. E., Gardini L., Kevrekidis I. G., Millerioux G., Mira C. On some properties of invariant sets of two-dimensional noninvertible maps. Int. J. Bifurcation and Chaos, 1997, no. 7(06), pp. 1167–1194. https://doi.org/10.1142/S0218127497000613
11. Parker T. S., Chua L. O. Practical Numerical Algorithms for Chaotic Systems. Springer-Verlag, New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3486-9
12. Nusse H. E., Yorke J. A. A procedure for finding numerical trajectories in chaotic saddles. Physica D., 1989, no. 36(1-2), pp. 137–156. https://doi.org/10.1016/0167-2789(89)90253-4
13. You Z., Kostelich E. J., Yorke J. A. Calculating stable and unstable manifolds. Int. J. Bifurcation and Chaos, 1991, no. 01(03), pp. 605–623. https://doi.org/10.1142/S0218127491000440
14. England J.P., Krauskopf B., Osinga H.M. Computing one-dimensional stable manifolds and stable sets of planar maps without the inverse. SIAM J. Appl. Dyn. Syst., 2004, no. 3(2), p. 161–190. https://doi.org/10.1137/030600131
15. Krauskopf B., Osinga H.M., Doedel E.J., Henderson M.E., Guckenheimer J., Vladimirsky A., Dellnitz M., Junge O. A survey of methods for computing (un)stable manifolds of vector fields. Int. J. Bifurcation and Chaos, 2005, no. 15(03), pp. 763–791. https://doi.org/10.1142/S0218127405012533
16. Fundinger D. Toward the calculation of higher-dimensional stable manifolds and stable sets for noninvertible and piecewise-smooth maps. J. Nonlinear Sci., 2008, no. 18, pp. 391–413. https://doi.org/10.1007/s00332-007-9016-4
17. Li. H., Fan Y., Zhang J. A new algorithm for computing one-dimensional stable and unstable manifolds of maps. Int. J. Bifurcation and Chaos, 2012, no. 22(01), 1250018 p. https://doi.org/10.1142/S0218127412500186
18. Guckenheimer J., Krauskopf B., Osinga H. M., B. Sandstede B. Invariant manifolds and global bifurcations. Chaos, 2015, no. 25(9), 097604 p. https://doi.org/10.1063/1.4915528
19. Yue X-L., Xu Y, Xu W., Sun J-Q. Global Invariant manifolds of dynamical systems with the compatible cell mapping method. Int. J. Bifurcation and Chaos, 2019, no. 29(8), 1950105 p. https://doi.org/10.1142/S0218127419501050
20. Zhusubaliyev Zh. T., Mosekilde E. Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems. World Scientific, Singapore, 2003.
21. Zhusubaliyev Zh. T., Mosekilde E. Equilibrium-torus bifurcation in nonsmooth systems. Physica D: Nonlinear Phenomena, 2008, no. 237(7), pp. 930-936. https://doi.org/10.1016/j.physd.2007.11.019
22. Simpson D.J.W. The structure of mode-locking regions of piecewise-linear continuous maps: I. Nearby mode-locking regions and shrinking points. Nonlinearity, 2016, no. 30(1), pp. 382–444. https://doi.org/10.1088/1361-6544/aa4f49
23. Zhusubaliyev Zh. T., Mosekilde E. Direct transition from a stable equilibrium to quasiperiodicity in non-smooth systems. Physics Letters A., 2008, no. 372(13), pp. 2237–2246. https://doi.org/10.1016/j.physleta.2007.08.077
24. Baushev V. S., Zhusubaliyev Zh. T. Indeterminable states of a voltage regulator with pulse-width control. Elect. Techn., 1992, no. 3, pp. 85-98.
25. Zhusubaliyev Zh. T., Mosekilde E., De S., Banerjee S. Transitions from phaselocked dynamics to chaos in a piecewise-linear map. Physical Review E, 2008, no. 77, 026206 p. https://doi.org/10.1103/PhysRevE.77.026206
26. De S., Dutta P.S., Banerjee S. Torus destruction in a nonsmooth noninvertible map. Physics Letters A., 2012, no. 376, pp. 400-406. https://doi.org/10.1016/j.physleta.2011.11.017
27. Аvrutin V., Zhusubaliyev Zh. T. Nested closed invariant curves in piecewise smooth maps. Int. J. Bifurcation and Chaos, 2019, no. 29(7), 1930017 p. https://doi.org/10.1142/S0218127419300179.
Review
For citations:
Zhusubaliyev Z.T., Rubanov V.G., Gol’tsov Yu.A. Calculation of Invariant Manifolds of Piecewise-Smooth Maps. Proceedings of the Southwest State University. 2020;24(3):166-182. (In Russ.) https://doi.org/10.21869/2223-1560-2020-24-3-166-182