Preview

Proceedings of the Southwest State University

Advanced search

Bifurcation Analysis of Piecewise Smooth Bimodal Maps Using Normal Form

https://doi.org/10.21869/2223-1560-2020-24-3-137-151

Abstract

Purpose of reseach. Studyof bifurcations in piecewise-smooth bimodal maps using a piecewise-linear continuous map as a normal form.
Methods. We propose a technique for determining the parameters of a normal form based on the linearization of a piecewise-smooth map in a neighborhood of a critical fixed point.
Results. The stability region of a fixed point is constructed numerically and analytically on the parameter plane. It is shown that this region is limited by two bifurcation curves: the lines of the classical period-doubling bifurcation and the “border collision” bifurcation. It is proposed a method for determining the parameters of a normal form as a function of the parameters of a piecewise smooth map. The analysis of "border-collision" bifurcations using piecewise-linear normal form is carried out.
Conclusion. A bifurcation analysis of a piecewise-smooth irreversible bimodal map of the class Z1–Z3–Z1 modeling the dynamics of a pulse–modulated control system is carried out. It is proposed a technique for calculating the parameters of a piecewise linear continuous map used as a normal form. The main bifurcation transitions are calculated when leaving the stability region, both using the initial map and a piecewise linear normal form. The topological equivalence of these maps is numerically proved, indicating the reliability of the results of calculating the parameters of the normal form.

About the Authors

Z. T. Zhusubaliyev
Southwest State University
Russian Federation

Zhanybai T. Zhusubaliyev, Dr. of Sci. (Engineering), Professor, Department of Computer Science

50 Let Oktyabrya str. 94, Kursk 305040



D. S. Kuzmina
Southwest State University
Russian Federation

Daria S. Kuzmina, Master Student of the Department of Computer Science

50 Let Oktyabrya str. 94, Kursk 305040



O. O. Yanochkina
Southwest State University
Russian Federation

Olga О. Yanochkina, Cand. of Sci. (Engineering), Associate Professor, Department of Computer Science

50 Let Oktyabrya str. 94, Kursk 305040



References

1. Sharkovsky A., Kolyada S., Sivak A., Fedorenko V. Dynamics of One-dimensional Maps. Dordrecht: Springer; 1997. https://doi.org/10.1007/978-94-015-8897-3

2. Maistrenko Yu. L., Maistrenko V. L., Vikil S. U., Chua L. O. Bifurcations of attracting cycles from delayed Chua’s circuit. Int. J. Bifurcation and Chaos, 1995, no.5 (3), pp. 653–671. https://doi.org/10.1142/S021812749500051X

3. Banerjee S., Karthik M. S., Yuan G., Yorke J. A. Bifurcations in one-dimensional piecewise smooth maps: Theory and applications in switching circuits. IEEE Trans. Circ. and Sys. I, 2000, no. 47 (3), pp. 389–394. https://doi.org/10.1109/81.841921

4. Zhusubaliyev Zh. T., Mosekilde E. Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems. Singapore: World Scientific, 2003. https://doi.org/10.1142/5313

5. Panchuk A., Sushko I., Schenke B., Avrutin V. Bifurcation structures in a bimodal piecewise linear map: regular dynamics. Int. J. Bifurcation and Chaos, 2013, no. 23 (12), 1330040 p. https://doi.org/10.1142/S0218127413300401

6. Avrutin V., Gardini L., Sushko I., Tramontana F. Continuous and Discontinuous Piecewise-Smooth One-Dimensional Maps: Invariant Sets and Bifurcation Structures. Singapore: World Scientific, 2019. https://doi.org/10.1142/8285

7. Mira C., Gardini L., Barugola A., Cathala J. C. Chaotic Dynamics in Two-Dimensional Noninvertible Maps. Singapore: World Scientific, 1996. https://doi.org/10.1142/2252

8. Feigin M. I. Doubling of the oscillation period with C-bifurcations in piecewise continuous systems. J. Appl. Math. Mech, 1970, no. 34 (5), pp. 822 – 830. https://doi.org/10.1016/0021-8928(70)90064-X

9. di Bernardo M., Feigin M. I., Hogan S. J., Homer M. E. Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems. Chaos, Solitons and Fractals, 1999, no. 10 (11), pp. 1881 – 1908. https://doi.org/10.1016/S0960-0779(98)00317-8.

10. Nusse H. E., Yorke J. A. Border-collision bifurcations including “period two to period three” for piecewise smooth systems. Physica D. 1992, no. 57 (1-2), pp. 39 – 57. https://doi.org/10.1016/0167-2789(92)90087-4

11. Nusse H. E., Yorke J. A. Border collision bifurcation: an explanation for observed bifurcation phenomena. Physical Review E, 1994, no. 49, pp. 1073-1076. https://doi.org/10.1103/PhysRevE.49.1073

12. Nusse H. E., Yorke, J. A. Border-collision bifurcations for piecewise smooth one dimensional maps. Int. J. Bifurcation and Chaos. 1995, no. 5 (1), pp. 189–207. https://doi.org/10.1142/S0218127495000156

13. di Bernardo M., Budd C. J., Champneys A. R., Kowalczyk P. Piecewise-Smooth Dynamical Systems: Theory and Applications. London: Springer-Verlag, 2008. https://doi.org/10.1007/978-1-84628-708-4

14. Avrutin V., Zhusubaliyev Zh. T., Saha A., Banerjee S., Sushko I., Gardini L. Dangerous bifurcations revisited. Int. J. Bifurcation and Chaos. 2016, no. 26 (14), 1630040 p. (24 pages). https://doi.org/10.1142/S0218127416300408

15. Zhusubaliyev Zh. T., Mosekilde E., De S., Banerjee S. Transitions from phaselocked dynamics to chaos in a piecewise-linear map. Physical Review E, 2008, no. 77, 026206 p. https://doi.org/10.1103/PhysRevE.77.026206

16. Zhusubaliyev Zh. T., Mosekilde E., Maity S., Mohanan S., Banerjee S., Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation. Chaos, 2006, no. 16(2), 023122 p. https://doi.org/10.1063/1.2208565

17. Sushko I., Avrutin V., Gardini L. Bifurcation structure in the skew tent map and its application as a border collision normal form. Journal of Difference Equations and Applications, 2016, no. 22(8), pp. 1040–1087. http://dx.doi.org/10.1080/10236198.2015.1113273

18. Sushko I., Gardini L., Avrutin V. Nonsmooth one-dimensional maps: some basic concepts and definitions. Journal of difference equations and applications. 2016, no. 22 (12), pp. 1816-1870. http://dx.doi.org/10.1080/10236198.2016.1248426.

19. Zhusubaliyev Zh. T., Mosekilde E. Equilibrium-torus bifurcation in nonsmooth systems. Physica D. 2008, no. 237(7), pp. 930 – 936. https://doi.org/10.1016/j.physd.2007.11.019

20. Avrutin V., Mosekilde E., Zhusubaliyev Zh. T., and Gardini L. Onset of chaos in a single-phase power electronic inverter. Chaos, 2015, no. 25 (4), pp. 043114-1 – 043114-14. https://doi.org/10.1063/1.4918299


Review

For citations:


Zhusubaliyev Z.T., Kuzmina D.S., Yanochkina O.O. Bifurcation Analysis of Piecewise Smooth Bimodal Maps Using Normal Form. Proceedings of the Southwest State University. 2020;24(3):137-151. (In Russ.) https://doi.org/10.21869/2223-1560-2020-24-3-137-151

Views: 470


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)