Preview

Proceedings of the Southwest State University

Advanced search

KINEMATIC AND JACOBIAN ANALYSIS APPROACH FOR THE FOUR-LEGGED ROBOT

https://doi.org/10.21869/2223-1560-2018-22-4-32-41

Abstract

This paper presents forward kinematics, inverse kinematics and Jacobian analysis of four-legged robot research. The kinematics analysis is the main problem of the legged robot. The four-legged robots are very complex more than wheeled robots. In this study,the four-legged robot of each leg calculates Denavit-Hartenberg (D-H) method,that is used for forward kinematics and the inverse is used the geometrical and mathematical methods.The Kinematic divided into two categories Forward Kinematic and Inverse Kinematics. The forward kinematic is calculated we knew the leg of endpoint position for the angles (θ1,θ2 and θ3 ). . Inverse kinematics is used to compute the joint angles which will achieve a desired position and orientation of the end-effector relative to the base frame. The Jacobian is one of the most important analyses for controlling smooth trajectory planning and execution in the derivation of the dynamic equation of robot motion.For calculation is used MATLAB software and robot modeling is used Simulink toolbox in MATLAB software. A program is obtained that calculate joint of angular velocity and angles to move from the desired position to target position. In this study are given different angular velocity and angle of the endpoint of the leg. The work mainly focuses on mechanical design, calculation of kinematic analysis, Jacobian function and experiment data of four-legged robots in MATLAB simulation.

About the Authors

S. F. Jatsun
Southwest State University
Russian Federation


Yan Naing Soe
Southwest State University
Russian Federation


References

1. Математическое моделирование мобильного гусеничного робота / С.Ф. Яцун, Чжо Пьо Вей, А.В. Мальчиков, Е.С. Тарасова // Современные проблемы науки и образования. 2013. № 6.

2. Gor M. M., Pathak P. M. and J-M Yang., Dynamic Modeling and Simulation of Compliant Legged Quadruped Robot // Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013, pp 7 - 11.

3. Muhammed Arif Sen, Veli Bakircioglu, and Mete Kalyoncu., Inverse Kinematic Analysis Of A Quadruped Robot // International journal of scientific & technology research. September 2017. Volume 6, issue 09, 2277-8616, Pp. 285 - 289.

4. Zielinska T., John Heng., Mechanical design of multifunctional quadruped // Mechanism and Machine Theory. 2003. № 38. P. 463 - 478.

5. Song S. M., Waldron K. J., Machines that walk: The adaptive suspension vehicle, MIT Press, Cambridge (1989).

6. Mary Anne Simpson., Boston Dy-namics: Quadruped Rough Terrain Robot Prototype (2008, March 27). 2017, pp. 1 - 2. URL: https://phys.org/news/2008-03-boston-dynamics-quadruped-rough-terrain.html.

7. Nancy Owano., Boston Dynamics unwraps military robot AlphaDog (w/ video) (2011, October 3). 2017, pp 1 - 2. URL: https://phys.org/news/2011-10-boston-dynamics-unwraps-military-robot.html.

8. Robert F. Battaglia., Design of the SCOUT II Quadruped with Preliminary Stair-Climbing // M.E. Thesis, Department of Mechanical Engineering, McGill University, Montreal, Canada, May 1999.

9. K. Berns and W. Ilg., Mechanical construction and computer architecture of the four-legged walking machine BISAM // ASME Transactions on Mechatronics, 4 (1) (1999) 32-38.

10. C. Ridderstom and J. Ingvast., Quadruped posture control based on simple force distribution-a notion and a trial // IEEE Conference on Intelligent Robots and Systems. Mad, Hawaii, USA (2001). P. 2326-2331.

11. Wai Mar Myint, Theingi., Kine-matic Control of Pick and Place Robot Arm // International Journal of Engineering and Techniques. July - Aug 2015. Vol. 1. Is. 4. P. 63 - 70.

12. Smita A. Ganjare, V S Narwane and Ujwal Deole., Kinematic Modeling of Quardruped Robot // International Journal on Theoretical and Applied Research in Mechanical Engineering (IJTARME). 2013. Vol. 2, is. 4. P. 21 - 26.

13. Emmanuel Dean-Leon, Suraj Nair and Alois Knoll., User friendly MatLab-toolbox for symbolic robot dynamic modeling used for control design 2013. URL: // http://ieeexplore.ieee.org/document/ 6491292/

14. Ahmed Kharidege, Ding Jianbiao, Yajun Zhang., Performance Study of PID and Fuzzy Controllers for Position Control of 6 DOF arm Manipulator with Various Defuzzification Strategies // MATEC Web of Conferences 77, 01011 (2016),pp 1 - 6.

15. Adrian-FlorinNICOLESCU, Florentin-Marian ILIE and Tudor-George ALEXANDRU., forward and inverse kinematics study of industrial robots taking into account constructive and functional parameter's modeling // Proceedings in Manufacturing Systems. 2015. Vol. 10, is. 4. P. 157-164.

16. Krzysztof Tcho´n, Member IEEE., Optimal Extended Jacobian Inverse Kinematics Algorithms for Robotic Manipulators // IEEE Transactions on robotics. 2008. Vol. 24, № 6. P. 1440 - 1552.

17. Анализ конструкций, принципы создания, основы моделирования / С.Ф. Яцун, С.И. Савин, О.В. Емельянова, А.С. Яцун, Р.Н. Турлапов. Курск, 2015. С. 32 - 37.

18. Яцун С. Ф. Савин С. И., Кинематический анализ многозвенного робота для перемещения в трубопроводах // Управляемые вибрационные технологии и машины: сб. науч. ст. Ч. 2. Курск, 2014. С. 256-266.

19. Яцун С.Ф., Тарасова Е.С., Кинематический анализ движения руки в локтевом суставе при реабилитации методами механотерапии // Известия Самарского научного центра Российской академии наук. 2011. Т. 13, №4(4). С. 1215-1220.


Review

For citations:


Jatsun S.F., Soe Ya.N. KINEMATIC AND JACOBIAN ANALYSIS APPROACH FOR THE FOUR-LEGGED ROBOT. Proceedings of the Southwest State University. 2018;22(4):32-41. (In Russ.) https://doi.org/10.21869/2223-1560-2018-22-4-32-41

Views: 1555


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)