Preview

Proceedings of the Southwest State University

Advanced search

SIMULATION OF ANTHROPOMORPHIC ROBOTS WITH ELASTIC DRIVES BY INTRODUCING VIRTUAL LINKS

https://doi.org/10.21869/2223-1560-2018-22-3-59-66

Abstract

Anthropomorphic walking robots are among the most promising robot types, due to the possibility to introduce them into the urbane environment through the use of the existing infrastructure. Control systems developed for such robots require access to the exact mathematical models of these robots, taking into account the properties of actuators, gears and sensors. In this paper, we consider approaches to describing the model of a bipedal walking robot with elastic drives. The robot is a three-link mechanism that moves in the sagittal plane and performs verticalization (sit-to-stand transfer). Two variants of describing the dynamics of the robot are shown. In the first variant, the number of equations describing the movement of the robot is doubled due to the introduction of elastic drives, in comparison with the case when there are no elastic elements present. In the second variant, there is robot model and the elastic element dynamics model, and bothare described separately. The advantages of this method include the fact that it allows us to preserve the structure and properties of the equations of motion of the mechanism used in constructing control methods in cases when the elastic properties of the gears are not taken into account, and it also allows to conserve the structure of the generalized inertia matrix. The simulation results are presented in two described previously variants, their comparison is made. It is established that both mathematical models behave almost identically, with the most significant differences manifested in the formation of control actions generated by the regulator.

About the Authors

S. I. Savin
Southwest State University
Russian Federation


L. Yu. Vorochaeva
Southwest State University
Russian Federation


References

1. Griffin R., Wiedebach G., Bertrand S., Leonessa A. Pratt J. Straight-Leg Walking Through Underconstrained Whole-Body Control. 2017. arXiv preprint arXiv: 1709. 03660.

2. Pratt J., Carff J., Drakunov S., Goswami A. Capture point: A step toward humanoid push recovery // Proc. 6th IEEE-RAS Intern. Conf. Humanoid Robots. Genova, Italy, 2006, pp. 200-207.

3. Jatsun S., Savin S., Yatsun A. Motion control algorithm for exoskeleton push recovery in the frontal plane // Proc. Intern. Conf. on Robotics in Alpe-Adria Danube Region. Belgrade, Serbia, 2016, pp. 474-481.

4. Dai H., Tedrake R. Planning robust walking motion on uneven terrain via convex optimization // Proc. 16th IEEE-RAS Intern. Conf. Humanoid Robots. Cancun, Mexico, 2016, pp. 579-586. IEEE.

5. Jatsun S., Savin S., Yatsun A. Footstep Planner Algorithm for a Lower Limb Exoskeleton Climbing Stairs // Proc. Intern. Conf. on Interactive Collaborative Robotics. Hatfield, UK, 2017, pp. 75-82.

6. Mason S., Rotella N., Schaal S., Righetti L. Balancing and walking using full dynamics LQR control with contact constraints // Proc. 16th IEEE-RAS Intern. Conf. Humanoid Robots. Cancun, Mexico, 2016, pp. 63-68.

7. Galloway K., Sreenath K., Ames A.D., Grizzle J.W. Torque saturation in bipedal robotic walking through control Lyapunov function-based quadratic programs // IEEE Access. 2015. Vol. 3. P. 323-332.

8. Savin S., Vorochaeva L. Nested quadratic programming-based controller for pipeline robots // Proc. Intern. Conf. Industrial Engineering, Applications and Manufacturing (ICIEAM). St. Petersburg, Russia. 2017. P. 1-6.

9. Адаптивная система управления экзоскелета, осуществляющего вертикализацию человека / С.Ф. Яцун, С.И. Савин, А.С., Яцун Р.Н. Турлапов // Известия Юго-Западного государственного университета. Серия Техника и технологии. 2015. №3 (16). C. 30-37.

10. Синтез параметров регулятора экзоскелета, с использованием lpτ последовательностей / С.Ф. Яцун, С.И. Савин, А.С. Яцун, И.А. Яковлев // Известия Юго-Западного государственного университета. Серия: Техника и технологии. 2015. №4 (17). C. 24-31.

11. Jatsun S.F., Vorochaeva L.Yu., Yatsun A.S., Savin S.I. The modelling of the standing-up process of the anthropomorphic mechanism // Proc. 18th Intern. Conf. Assistive Robotics (CLAWAR). HangZhou, China, 2015. P. 175-182.

12. Особенности управления движением многозвенной электромеханической системы с учетом свойств электропривода / Г.Я. Пановко, С.Ф. Яцун, С.И. Савин, А.С. Яцун // Машиностроение и инженерное образование. 2016. № 2 (47). С. 2-10.

13. Pratt J.E., Krupp B.T. Series elastic actuators for legged robots // Unmanned Ground Vehicle Technology Vi. Orlando, Florida, United States, 2004, vol. 5422, pp. 135-145.

14. Jatsun S., Savin S., Yatsun A., Postolnyi A. Control system parameter optimization for lower limb exoskeleton with integrated elastic elements // Proc. 19th Intern. Conf. Advances in Cooperative robotics (CLAWAR). London, UK, 2016. P. 797-805.

15. Хайрер Э., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциально-алгебраические задачи. М.: Мир, 1999. 685 с.

16. Jatsun S., Savin S., Yatsun A., Malchikov A. Study of controlled motion of exoskeleton moving from sitting to standing position // Advances in Intelligent Systems and Computing. 2015. Vol. 371. P. 165-172.

17. Jatsun S., Savin S., Yatsun A. Comparative analysis of iterative LQR and adaptive PD controllers for a lower limb exoskeleton // Proc. IEEE Intern. Conf. Cyber Technology in Automation, Control and Intelligent Systems (CYBER). Chengdu, China, 2016. P. 239-244.


Review

For citations:


Savin S.I., Vorochaeva L.Yu. SIMULATION OF ANTHROPOMORPHIC ROBOTS WITH ELASTIC DRIVES BY INTRODUCING VIRTUAL LINKS. Proceedings of the Southwest State University. 2018;22(3):59-66. (In Russ.) https://doi.org/10.21869/2223-1560-2018-22-3-59-66

Views: 673


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)