Preview

Proceedings of the Southwest State University

Advanced search

Technique for obtaining the membrane stress ratio in a fabric arch-type shell

https://doi.org/10.21869/2223-1560-2024-28-2-37-55

Abstract

Purpose of research. The purpose of this work is to develop the technique for obtaining the membrane stress ratio in a fabric shell which consists of a number of arch-type sectors of given height at the center.

Methods. The iterative secant method is used for finding the membrane stress ratio. The height in the center of a sector is determined by means of the force density method at every iteration. The method includes applying a mesh on a shell surface and determining the nodal coordinates of the mesh via the solution of the set of equilibrium equations. The equations of the set are linearized by means of substitutions, which are the force to length ratios for the mesh elements.

Results. The iterative technique for obtaining the membrane stress ratio has been developed. The technique consists of the following stages: initial search range determination and discrepancy minimization between the required and calculated heights at the center of the shell sector. The quality of the algorithm is confirmed by numerical simulating of a number of sectors of an arch-type fabric roof on a rectangular plan. The discrepancy between the specified heights in the center of the sectors and the heights obtained by the specialized licensed software package does not exceed 1.0%.

Conclusion. The surface shape of fabric shells depends on the membrane stresses. The shape-finding problem is well elaborated theoretically by now. Judging by the literature survey, however, the inverse problem of finding the membrane stress ratio given the geometrical parameters of the shell has not been developed yet. The proposed technique will facilitate research and development of fabric building constructions. Further development of the technique is in the field of multi-section fabric structural analysis with supporting structure compliance considered.

About the Authors

A. V. Chesnokov
Lipetsk State Technical University
Russian Federation

Andrei V. Chesnokov, Cand. of Sci. (Engineering), Associate Professor, Associate Professor of the Building Production Departament

30, Moskovskaya str., Lipetsk 398055

Researcher ID: U-4758-2018

Author ID: 57170021900


Competing Interests:

The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article



V. V. Mikhailov
Lipetsk State Technical University
Russian Federation

Vitalii V. Mikhailov, Dr. of Sci. (Engineering), Professor, Head of the Building Production Departament

30, Moskovskaya str., Lipetsk 398055

Researcher ID: ISU-9851-2023

Author ID: 57215327886


Competing Interests:

The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article



References

1. Xu J., Zhang Y., Yu Q., Zhang L. Analysis and design of fabric membrane structures: a systematic review on material and structural performance. Thin-Walled Structures. 2022; (170): 1-17. https://doi.org/10.1016/j.tws.2021.108619

2. Xiongyan L., Zhang Z., Chu Q., Xue S., Yanli H. Experimental and simulation analysis of the initial shape of a large-span air-supported membrane structure. Thin-Walled Structures. 2022; 178: Article 109491. https://doi.org/10.1016/j.tws.2022.109491

3. Monticelli C. Membrane claddings in architecture. In: Llorens J.I. (ed.) Woodhead publishing series in textiles, fabric structures in architecture: Woodhead Publishing; 2015: 449-480. https://doi.org/10.1016/B978-1-78242-233-4.00014-0

4. Barozzi M., Viscuso S., Zanelli A. Design novel covering system for archaeological areas. VII International Conference on textile composites and inflatable structures. Structural membranes 2015: Proceedings. 2015: 105-114. Available at: https://upcommons.upc.edu/ handle/ 2117/109301 (accessed 24.02.2024)

5. Llorens J., Zanelli A. Structural membranes for refurbishment of the architectural heritage. Procedia Engineering. 2016; (155): 18-27. https://doi.org/10.1016/j.proeng.2016.08.003

6. Llorens J.I. Structural membranes for urban spaces. In: VII International Conference on textile composites and inflatable structures. Structural membranes 2015. Proceedings. 2015: 133 – 144. Available at: https://upcommons.upc.edu/handle/2117/109310 (accessed 24.02.2024)

7. Bel'kov A.V., Belov S.V., Zhukov A.P., Pavlov M.S., Ponomarev S.V., Kuznetsov S.A. Method for calculating the stress-strain state of cable-stayed shell structures of space antenna reflectors. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika = Tomsk State University Journal of Mathematics and Mechanics. 2019; (62): 5-18. (In Russ.) https://doi.org/10.17223/19988621/62/1.

8. Du J., Wang F., Bao H., Ge D., Ren Z. Form-finding and shape adjustment of cablemembrane reflectors. Acta Astronautica. 2023; 205: 213-224. https://doi.org/10.1016/ j.actaastro.2023.02.002.

9. Vazquez E., Correa D., Poppinga S. A review of and taxonomy for elastic kinetic building envelopes. Journal of Building Engineering. 2024; 82: Article 108227. https://doi.org/10.1016/j.jobe.2023.108227.

10. Hegyi D. Numerical stability analysis of arch-supported membrane roofs. Structures. 2021; (29): 785-795. https://doi.org/10.1016/j.istruc.2020.11.025

11. Wagner R. Bauen mit seilen und membranen. Berlin: Beuth Verlag GmbH. 2016. 517 p. (In German)

12. Eremeev P.G. Fabric membranes for roof structures over stadium stands. Promyshlennoe i grazhdanskoe stroitel'stvo = Industrial and Civil Engineering. 2015; (4): 33-36. (In Russ.). Available at: http://www.pgs1923.ru/ru/index.php?m=4&y=2015&v=04&p=00&r=06 (accessed 24.02.2024).

13. Hu J., Chen W., Qu Y., Yang D. Safety and serviceability of membrane buildings: a critical review on architectural, material and structural performance. Engineering Structures. 2020; 210: Article 110292. https://doi.org/10.1016/j.engstruct.2020.110292.

14. Le Meitour H., Rio G., Laurent H., Lectez A.S., Guigue P. Analysis of wrinkled membrane structures using a plane stress projection procedure and the dynamic relaxation method. International Journal of Solids and Structures. 2021; 208–209: 194-213. https://doi.org/10.1016/j.ijsolstr.2020.10.026.

15. Ziganshin A.D., Akhtyamova L.Sh., Sabitov L.S., Radaikin O.V., Kiyamov I.K. Numerical simulating of tower-type structures in ANSYS and Lira-Sapr software packages. Nauchno-tekhnicheskii vestnik Povolzh'ya = Scientific and technical Volga region bulletin. 2021; (2): 65-67. (In Russ.). Available at: https://ntvprt.ru/ru/archive-vypuskov (accessed 24.02.2024).

16. Haug E., De Kermel P., Gawenat B., Michalski A. Industrial design and analysis of structural membranes. International Journal of Space Structures. 2009; 24 (4): 191 - 204. https://doi.org/10.1260/026635109789968227.

17. Gao X., Cheng Z., Cao L., Tang W. Nonlinear two-dimensional analysis of manifold marine inflated membrane structures using vector form intrinsic finite element method. Ocean Engineering. 2023; 271: article 113813. https://doi.org/10.1016/j.oceaneng.2023.113813.

18. Strobel D., Singer P., Holl J. Analytical formfinding. International Journal of Space Structures. 2016; 31(1): 52 - 61. https://doi.org/10.1177/0266351116642076.

19. Kabasi S., Marbaniang A.L., Ghosh S. Form-finding of tensile membrane structures with strut and anchorage supports using physics-informed machine learning. Engineering Structures. 2024; 299: article 117093. https://doi.org/10.1016/j.engstruct.2023.117093

20. Kabasi S., Marbaniang A.L., Ghosh S. Physics-informed neural networks for the form-finding of tensile membranes by solving the Euler–Lagrange equation of minimal surfaces. Thin-Walled Structures. 2023; 182, part B: article 110309. https://doi.org/10.1016/j.tws.2022.110309.

21. Nguyen T.N., Hien T.D., Nguyen T.T., Lee J. A unified adaptive approach for membrane structures: form finding and large deflection isogeometric analysis. Computer Methods in Applied Mechanics and Engineering. 2020; 369: article 113239. https://doi.org/10.1016/j.cma.2020.113239.

22. Bel'kov A.V., Belov S.V., Zhukov A.P., Pavlov M.S., Ponomarev S.V. Calculation of the stress-strain state of cable-stayed shell structures taking into account the dimensional stability of cable-stayed elements. In: Dmitrieva M.A., editor. Sovremennye stroitel'nye materialy i tekhnologii. Sbornik nauchnykh statei = Modern building materials and technologies. Collection of scientific articles. Kaliningrad, 2023. P. 143-150. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=50475277 (accessed 24.02.2024).

23. Li X., Liu C., Xue S., Li X., Zhang C., Huang L., Wang W. The modified force density method for form-finding of cable net structure. Thin-Walled Structures. 2024; 195: article 111363. https://doi.org/10.1016/j.tws.2023.111363.

24. Strobel D., Holl J. On the calculation of textile halls. X International Conference on textile composites and inflatable structures. Structural membranes 2021. Munich, Germany. Proceedings. 2021. 7 p. https://doi.org/10.23967/membranes.2021.043.

25. Llorens J.I. Appropriate design of structural membranes. X International Conference on textile composites and inflatable structures. Structural membranes 2021. Munich, Germany. Proceedings. 2021. 12 p. https://doi.org/10.23967/membranes.2021.008.

26. Ezquerro J.A., Hernández-Verón M.A., Magreñán Á.A., Moysi A. A significant improvement of a family of secant-type methods. Journal of Computational and Applied Mathematics. 2023; 424: article 115002. https://doi.org/10.1016/j.cam.2022.115002.

27. Shelopugina E.O., Kozlova O.V. Secant method visualization for finding approximate roots of a nonlinear equation in MS Excel. In: Materialy VI Vserossiiskoi natsional'noi nauchnoi konferentsii molodykh uchenykh. Molodezh' i nauka: aktual'nye problemy fundamental'nykh i prikladnykh issledovanii = VI all-Russian National Scientific Conference of Young Scientists. Youth and science: current problems of fundamental and applied research. Proceedings. Komsomol'sk-na-Amure, 2023. P. 525-528. (In Russ.). Available at:: https://www.elibrary.ru/item.asp?id=54332651 (accessed 24.02.2024)


Review

For citations:


Chesnokov A.V., Mikhailov V.V. Technique for obtaining the membrane stress ratio in a fabric arch-type shell. Proceedings of the Southwest State University. 2024;28(2):37-55. (In Russ.) https://doi.org/10.21869/2223-1560-2024-28-2-37-55

Views: 163


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)