Model of Parameters of the Flight Route Deviation of Unmanned Aerial Vehicles from a Specified Trajectory
https://doi.org/10.21869/2223-1560-2021-25-4-145-161
Abstract
Purpose of research is to broaden the tools for using digital video surveillance systems for navigation of unmanned aerial vehicles in conditions of loss of signals from satellites.
Methods. The development of a mathematical model of deviations of an unmanned aerial vehicle from a specified trajectory is based on the theory of photogrammetry in terms of a mathematical description of the mutual orientation of a pair of aerospace images and parallaxes of the corresponding points in their overlap zone.
Results. A mathematical model that determines a functional relationship between the parameters of deviations of unmanned aerial vehicles from a given trajectory and changes in the longitudinal and transverse parallaxes of overlapping images of the underlying surface caused by these deviations, was developed. Quantitative estimates of the influence of deviation parameters on the magnitude of changes in the longitudinal and transverse parallaxes of the corresponding points of overlapping images were obtained.
Conclusion. The obtained functional dependencies provide the possibility of autonomous detection and assessment of the level of deviations of an unmanned aerial vehicle from a given trajectory in pitch, roll and yaw angles, as well as in altitude and direction of flight. At the same time, in addition to images of the underlying surface obtained and processed during flight on board unmanned aerial vehicles, the use of other information, including digital maps of the area of their application, is not required.
About the Authors
V. G. AndronovRussian Federation
Vladimir G. Andronov, Dr. of Sci. (Engineering), Head of the Department of Space Instrumentation and Communication Systems
50 Let Oktyabrya str. 94, Kursk 305040
A. A. Chuev
Russian Federation
Andrey A. Chuev, Post-Graduate Student Space Instrumentation and Communication Systems Department
50 Let Oktyabrya str. 94, Kursk 305040
A. A. Knyazev
Russian Federation
Alexander A. Knyazev, Student, Space Instrumentation and Communication Systems Department
50 Let Oktyabrya str. 94, Kursk 305040
References
1. Raspopov V.Ya., Shvedov A.P. Reshenie zadachi orientatsii dlya bespilotnykh letatel'nykh apparatov [Solving the orientation problem for unmanned aerial vehicles]. Giroskopiya i navigatsiya = Gyroscopy and Navigation, 2011, no. 2, pp. 26-27.
2. Andronov V.G., Emelyanov S.G. Autonomous navigation and attitude control of spacecrafts on near-earth circular orbits. Journal of applied engineering science. 2018, vol.16, no. 1, pp. 107-110.
3. Kikutis R., Stankūnas J., Rudinskas D. Autonomous unmanned aerial vehicle flight accuracy evaluation for three different path-tracking algorithms. Transport, 2019, no. 34(6), pp. 652-661.
4. Arulmurugan L., Raghavendra Prabhu S., Ilangkumaran M., Suresh V., Saravanakumar R., R., Raghunath M. Kinematics and plane decomposition algorithm for non linear path planning navigation and tracking of unmanned aerial vehicles. IOP Conference Series: Materials Science and Engineering, 2020, no. 995(1), pp. 012019. URL: https://iopscience.iop.org/article/10.1088/1757-899X/995/1/012019/pdf (accessed: 20.11.2021).
5. Luo S., Liu H., Hu M., Dong J. Review of multi-modal image matching assisted inertial navigation positioning technology for unmanned aerial vehicle. Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2020, vol. 42, no. 6, pp. 1-10.
6. Salychev O.S. Avtopilot BPLA s Inertsial'noi Integrirovannoi Sistemoi – osnova bezopasnoi ekspluatatsii bespilotnykh kompleksov [UAV autopilot with an Inertial Integrated System is the basis for the safe operation of unmanned complexes]. Available at: http://www.teknol.ru/trash/ uav_autopilot_salychev_2602182965.pdf (accessed: 24.11.2021).
7. Zinchenko O.N. Bespilotnyi letatel'nyi apparat: primenenie v tselyakh aerofotos"emki dlya kartografirovaniya [Unmanned aerial vehicle: application for aerial photography for mapping]. Moscow, 2011, 12 p.
8. Antonov D.A., Zharkov M.V., Kuznetsov I.M., Lunev E.M., Pronkin A.N. Opredelenie navigatsionnykh parametrov bespilotnogo letatel'nogo apparata na baze fotoizobrazheniya i inertsial'nykh izmerenii [Determination of navigation parameters of an unmanned aerial vehicle based on photographic images and inertial measurements]. Trudy MAI = Proceedings of MAI, 2016, is. № 91, pp. 1-26.
9. Andronov V.G., Yemelyanov S.G. Avtonomnoe opredelenie elementov vneshnego orientirovaniya kosmicheskikh snimkov [Autonomous determination of elements of external orientation of satellite images]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika. Meditsinskoe priborostroenie = Proceedings of the Southwest State University. Series: Control, Computing Engineering, Information Science. Medical Instruments Engineering, 2016, no. 2(19), pp. 77-87.
10. Andronov V.G., Emelyanov S.G. Metod avtonomnoi navigatsii kosmicheskikh apparatov [Method of autonomous navigation of spacecraft]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2016, no. 2(65), pp. 65-73.
11. Andronov V.G., Emelyanov S.G. Astronavigatsiya kosmicheskikh apparatov na krugovykh okolozemnykh orbitakh [Astronavigation of spacecraft in circular near-Earth orbits]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2016, no. 3(66), pp. 34-44.
12. Andronov V.G. Tekhnologiya apriornoi otsenki kachestva kosmicheskoi optikoelektronnoi s"emki [Technology of a priori assessment of the quality of space opticalelectronic survey]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, no. 3(54), 2014, pp. 8-12.
13. Andronov V.G. Apriornaya otsenka kachestva kosmicheskoi optiko-elektronnoi s"emki [A priori assessment of the quality of space optical-electronic survey]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika. Meditsinskoe priborostroenie = Proceedings of the Southwest State University. Series: Control, Computing Engineering, Information Science. Medical Instruments Engineering, no. 1, 2014, pp. 36-40.
14. Nazarov A.S. Fotogrammetriya [Photogrammetry]. Minsk, TetraSystems Publ., 2006. 368 p.
15. Rakov D.N., Nikitin V.N. Vybor tsifrovogo nemetricheskogo fotoapparata dlya bespilotnogo aerofotos"emochnogo kompleksa [The choice of a digital non-metric camera for an unmanned aerial photography complex]. Interexpo Geo-Siberia, 2012, no. 7, pp. 27-36.
16. Kostyuk A.S. Osobennosti aerofotos"emki so sverkhlegkikh bespilotnykh letatel'nykh apparatov [Features of aerial photography from ultralight unmanned aerial vehicles]. Omskii nauchnyi vestnik = Omsk Scientific Bulletin, 2011, no. 1 (104), pp. 236-240.
17. Germak O.V. Opredelenie elementov vzaimnogo orientirovaniya snimkov [Determination of elements of mutual orientation of images]. Naukovedenie = Science Studies, 2012, no. 4, pp. 1-5.
18. Ardentov A. A., Beschastny I. Y., Mashtakov A. P. [etс.] Algoritmy vychisleniya polozheniya i orientatsii BPLA [Algorithms for calculating the position and orientation of the UAV]. Programmnye sistemy: teoriya i prilozheniya = Software systems: theory and applications, 2012, vol. 3, no. 3(12), pp. 23-38.
19. Hosseini K., Ebadi H., Farnood Ahmadi F. Determining the location of UAVs automatically using aerial or remotely sensed high-resolution images for intelligent navigation of UAVs at the time of disconnection with GPS. Journal of the Indian Society of Remote Sensing. 2020, no. 48(12), pp. 1675-1689. https://doi.org/10.1007/s12524-020-01187-4
Review
For citations:
Andronov V.G., Chuev A.A., Knyazev A.A. Model of Parameters of the Flight Route Deviation of Unmanned Aerial Vehicles from a Specified Trajectory. Proceedings of the Southwest State University. 2021;25(4):145-161. (In Russ.) https://doi.org/10.21869/2223-1560-2021-25-4-145-161