Structure and Circuit Design of a Bidirectional Wireless Power Transmission System for Swarm Robots
https://doi.org/10.21869/2223-1560-2021-25-4-84-103
Abstract
Purpose of research. The development of swarm robotic systems and approaches to the simultaneous solution of the problem by a group of robots makes the direction of research related to the distribution of power resources between swarm agents topical. The implementation of these tasks requires the development of systems that make it possible to transfer power between swarm agents. The aim of the study is to develop the structure and circuit design of a bidirectional wireless power transmission system based on a resonant self oscillator.
Methods. The analysis of existing research and development of bidirectional power transmission systems by inductive method is carried out. The following parameters - transmitted power, efficiency, and power transmission distance were studied.
Results. The principle of operation of the developed circuit design in the mode of receiving and transmitting power is described, the schematic diagram and the design ratios are provided. The dependences of the efficiency of the system on the transmitted power and on the distance of power transmission are obtained. The highest value of the transmitted power of 15.4 W is achieved with a minimum distance between the receiving and transmitting parts of the system. The highest efficiency value of 59.91% is achieved with a transmitted power of 10.09 W.
Conclusion. The developed structure and circuit design are the basis for the implementation of a bidirectional wireless power transmission system. The proposed structure, which uses a step-up DC-DC converter, allows us to obtain a voltage at the output of a system operating in the power reception mode equal to and higher than the voltage of the power supply of the system operating in the power transmission mode. The application of this solution is relevant for the transfer of power between autonomous robots, the transfer of power from the power source to the robot and in the opposite direction.
Keywords
About the Authors
K. D. KrestovnikovRussian Federation
Konstantin D. Krestovnikov, Junior Researcher of Laboratory of Autonomous Robotic Systems
39, 14th Line, St. Petersburg 199178
A. V. Semenov
Russian Federation
Aleksandr V. Semenov, Master Student
67, Bolshaya Morskaya str., St. Petersburg 190121
A. A. Erashov
Russian Federation
Aleksei A. Erashov, Junior Researcher of Laboratory of Big Data Technologies in Socio-Cyberphysical Systems
39, 14th Line, St. Petersburg 199178
References
1. Pshikhopov V.KH., Medvedev M.YU. Gruppovoe upravlenie dvizheniem mobil'nyh robotov v neopredelennoj srede s ispol'zovaniem neustojchivyh rezhimov. [Group control of the movement of mobile robots in an uncertain environment using unstable modes]. Informatika i avtomatizatsiya = Informatics and Automation. 2018; 5: 39–63. https://doi.org/10.15622/sp.60.2 (In Russ.).
2. Araki B., Strang J., Pohorecky S., Qiu C., Naegeli T., Rus D. Multi-robot path planning for a swarm of robots that can both fly and drive. 2017 IEEE International Conference on Robotics and Automation (ICRA). 2017; pp. 5575-5582. https://doi.org/10.1109/ICRA.2017.7989657.
3. Arkhipkin A., Komchenkov V., Korolkov D., Petrov V., Simonov, S., Terentev A. Zadachi gruppovogo upravlenija robotami v robototehnicheskom komplekse pozharotushenija [Problems Of Group Control Of Robots In The Robotic Complex Of Fire Extinguishing]. Trudy SPIIRAN = SPIIRAS Proceedings. 2016; 2(45): 116-129. https://doi.org/10.15622/sp.45.7 (In Russ.).
4. Khaluf Y., Vanhee S., Simoens P. Local ant system for allocating robot swarms to time-constrained tasks. Journal of Computational Science. 2019; 31: 33-44. https://doi.org/10.1016/j.jocs.2018.12.012.
5. Krestovnikov K., Cherskikh E., Ronzhin A. Mathematical model of a swarm robotic system with wireless bi-directional energy transfer. Robotics: Industry 4.0 Issues & New Intelligent Control Paradigms, Studies in Systems, Decision and Control. 2020; 272: 13-23. https://doi.org/10.1007/978-3-030-37841-7_2.
6. Melhuish C., Kubo M. Collective energy distribution: Maintaining the energy balance in distributed autonomous robots using trophallaxis. Distributed Autonomous Robotic Systems 6. Springer, Tokyo. 2007; 275-284. https://doi.org/10.1007/978-4-431-35873-2_27.
7. Riehl P.S., Satyamoorthy A., Akram H., Yen Y.-C., Yang J.-C., Juan B., Lee C., Lin F., Muratov V., Plumb W., Tustin P.F. Wireless Power Systems for Mobile Devices Supporting Inductive and Resonant Operating Modes. IEEE Transactions on Microwave Theory and Techniques. 2015; 63(3): 780-790. https://doi.org/10.1109/TMTT.2015.2398413.
8. Miskiewicz R., Moradewicz A. Contactless power interface for plug-in electric vehicles in V2G systems. Bulletin of the Polish Academy of Sciences: Technical Sciences. 2011; 59(4): 561-568.
9. Deyle T., Reynolds M. Surface based wireless power transmission and bidirectional communication for autonomous robot swarms. 2008 IEEE International Conference on Robotics and Automation. 2008; pp. 1036-1041. https://doi.org/10.1109/ROBOT.2008.4543341.
10. Low Z.N., Chinga R.A., Tseng R., Lin J. Design and Test of a High-Power HighEfficiency Loosely Coupled Planar Wireless Power Transfer System. Industrial Electronics. 2009; 56(5): 1801-1812. https://doi.org/10.1109/TIE.2008.2010110.
11. Itoh J.-I., Noguchi K., Orikawa K. System design of electric assisted bicycle using EDLCs and wireless charger. Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE-ASIA). 2014; pp. 2277-2284. https://doi.org/10.1109/IPEC.2014.6869907.
12. Shaw T., Mitra D. Wireless power transfer system based on magnetic dipole coupling with high permittivity metamaterials. IEEE Antennas and Wireless Propagation Letters. 2019; 18(9): 1823-1827. https://doi.org/10.1109/LAWP.2019.2930769.
13. Park C., Lee S., Cho G.H., Choi S.Y., Rim C.T. Two-dimensional inductive power transfer system for mobile robots using evenly displaced multiple pickups. IEEE Transactions on Industry Applications. 2013; 50(1): 558-565. https://doi.org/10.1109/TIA.2013.2271604.
14. Arvin F., Watson S., Turgut A.E., Espinosa J., Krajník T., Lennox B. Perpetual robot swarm: long-term autonomy of mobile robots using on-the-fly inductive charging. Journal ofIntelligent & Robotic Systems. 2018; 92(3): 395-412. https://doi.org/10.1007/s10846-017-0673-8.
15. Samanta S., Rathore A.K., Thrimawithana D.J. Bidirectional current-fed half-bridge (C)(LC)–(LC) configuration for inductive wireless power transfer system. IEEE Transactions on Industry Applications. 2017; 53(4): 4053-4062. https://doi.org/10.1109/TIA.2017.2682793.
16. Madawala U.K., Thrimawithana D.J. A bidirectional inductive power interface for electric vehicles in V2G systems. IEEE Transactions on Industrial Electronics. 2011;58(10): 4789-4796. https://doi.org/10.1109/TIE.2011.2114312.
17. Zhao L., Thrimawithana D.J., Madawala U.K. Hybrid bidirectional wireless EV charging system tolerant to pad misalignment. IEEE Transactions on Industrial Electronics. 2017; 64(9): 7079-7086. https://doi.org/10.1109/TIE.2017.2686301.
18. Madawala U.K., Neath M., Thrimawithana D.J. A power–frequency controller for bidirectional inductive power transfer systems. IEEE Transactions on Industrial Electronics. 2011; 60(1): 310-317. https://doi.org/10.1109/TIE.2011.2174537.
19. Miura S., Nishijima K., Nabeshima T. Bi-directional wireless charging between portable devices. International Conference on Renewable Energy Research and Applications (ICRERA). 2013, pp. 775-778. https://doi.org/10.1109/ICRERA.2013.6749857.
20. Huang M., Lu Y., Martins R.P. A reconfigurable bidirectional wireless power transceiver for battery-to-battery wireless charging. IEEE Transactions on Power Electronics. 2018; 34(8): 7745-7753. https://doi.org/10.1109/TPEL.2018.2881285.
21. Wu H., Gu B., Wang X., Pickert V., Ji B. Design and control of a bidirectional wireless charging system using GaN devices. 2019 IEEE Applied Power Electronics Conference and Exposition (APEC). 2019, pp. 864-869. https://doi.org/10.1109/APEC.2019.8721909.
22. Neath M.J., Swain A.K., Madawala U.K., Thrimawithana D.J., Vilathgamuwa D.M. Controller synthesis of a bidirectional inductive power interface for electric vehicles. IEEE Third International Conference on Sustainable Energy Technologies (ICSET). 2012, pp. 60-65. https://doi.org/10.1109/ICSET.2012.6357376.
23. Thrimawithana D.J., Madawala U. K. A contactless bi-directional power interface for plug-in hybrid vehicles. IEEE Vehicle Power and Propulsion Conference. 2009, pp. 396-401. https://doi.org/10.1109/VPPC.2009.5289820.
24. Cherskikh E. O., Erashov A. A., Bykov A. N. Analiz i klassifikacija avtonomnyh robototehnicheskih sistem po parametru jenergopotreblenija. [Analysis and classification of autonomous robotic systems by their energy consumption]. Vestnik VGU. Serija: Sistemnyj analiz i informacionnye tehnologii = Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies. 2021; 2: 56-80. https://doi.org/10.17308/sait.2021.2/3505 (In Russ.).
25. Krestovnikov K., Cherskikh E., Smirnov P. Wireless Power Transmission System Based on Coreless Coils for Resource Reallocation Within Robot Group. In International Conference on Interactive Collaborative Robotics. 2019, pp. 193-203. Springer, Cham. https://doi.org/10.1007/978-3-030-26118-4_19.
26. Krestovnikov K., Cherskikh E., Pavliuk N. Concept of a synchronous rectifier for wireless power transfer system. IEEE EUROCON 2019-18th International Conference on Smart Technologies. 2019, pp. 1-5. https://doi.org/10.1109/EUROCON.2019.8861856.
27. Krestovnikov K., Cherskikh E., Bykov А. Approach to Choose of Optimal Number of Turns in Planar Spiral Coils for Systems of Wireless Power Transmission. Elektronika ir Elektrotechnika. 2020; 26(6): 17-24. https://doi.org/10.5755/j01.eie.26.6.26181.
28. Meinke H., Gundlach F.W. Taschenbuch der Hochfrequenztechnik. Springer, Verlag Publ., 1986. part B13-B15. https://doi.org/10.1007/978-3-642-96894-5.
29. Krestovnikov K., Bykov A., Erashov A. Struktura i shemotehnicheskoe reshenie sistemy besprovodnoj peredachi jenergii dlja primenenija v mobil'nyh RTK [Structure and circuit solution of a wireless power transfer system for application in mobile robotic systems]. Robototehnika i tehnicheskaja kibernetika = Robotics and Technical Cybernetics. 2021; 9(3):196-206. https://doi.org/10.31776/RTCJ.9305.
30. Lu Y., Mao F., Martins R.P. Bi-directional Battery-to-Battery Wireless Charging Enabled by Reconfigurable Wireless Power Transceivers. In 2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC). 2018; pp. 1-2. https://doi.org/10.1109/EDSSC.2018.8487127.
31. Mao F., Lu Y., Seng-Pan U., Martins R.P. A reconfigurable cross-connected wireless-power transceiver for bidirectional device-to-device charging with 78.1% total efficiency. In 2018 IEEE International Solid-State Circuits Conference-(ISSCC), 2018; pp. 140-142.https://doi.org/10.1109/ISSCC.2018.8310223.
32. Hwang J.T., Lee D.S., Lee J.H. et al. 21.8 An all-in-one (Qi, PMA and A4WP) 2.5 W fully integrated wireless battery charger IC for wearable applications. In 2016 IEEE International Solid-State Circuits Conference (ISSCC). 2016; pp. 378-380. https://doi.org/10.1109/ISSCC.2016.7418065.
Review
For citations:
Krestovnikov K.D., Semenov A.V., Erashov A.A. Structure and Circuit Design of a Bidirectional Wireless Power Transmission System for Swarm Robots. Proceedings of the Southwest State University. 2021;25(4):84-103. (In Russ.) https://doi.org/10.21869/2223-1560-2021-25-4-84-103