Preview

Proceedings of the Southwest State University

Advanced search

Synthesis of an Algorithm for Diagnosing the Operation of Drying Chamber Electric Drives According toTemperature Sensors

https://doi.org/10.21869/2223-1560-2021-25-4-70-83

Abstract

Purpose of research is the development of a method for assessing the condition of drying chamber electric drives based on historical data from temperature sensors. The method includes the use of historical data, analysis and determination of the correlation between changes in temperature and humidity and the technical condition of fans and air valves. The developed mathematical model of the functional diagnostic unit should work in real time based on the current temperature readings.

Methods. The method is based on the study of experimental data using narrow-band filters, averaging blocks and correlation functions to compare the spectral components of the control signal and the response in the form of temperature to the fact of coincidence.

Results. Based on the results of the study, a technical solution for the PLC was implemented, which makes it possible to determine the malfunction of the electric drives of the drying chamber without using additional air flow sensors and the position of the dampers. The solution is based only on temperature sensor data. Testing of the operation of the diagnostic unit is performed in manual mode, when the executive elements are not controlled by the controller.

Conclusion. The method can be useful for developers of control systems for lumber drying chambers, since it allows obtaining additional diagnostic information about the technological process, increasing the reliability of the control system as a whole.

About the Authors

S. V. Prohorov
Tomsk Polytechnic University
Russian Federation

 Sergey V. Prohorov, Post-Graduand Student 

30, Lenin Ave., Tomsk 634050 



A. A. Shilin
Tomsk Polytechnic University
Russian Federation

 Aleksandr A. Shilin, Dr. of Sci. (Engineering) 

30, Lenin Ave., Tomsk 634050 



I. A. Primochkin
Tomsk Polytechnic University
Russian Federation

 Ilya A. Primochkin, Master Student 

 30, Lenin Ave., Tomsk 634050 



References

1. Stepka O. G., Makovetskii F. A. Komp'yuternoe modelirovanie i ehksperimental'noe issledovanie protsessa mikrovolnovoi sushki drevesiny [Computer modeling and experimental study of the process of microwave drying of wood]. Aktual'nye nauchnye issledovaniya v sovremennom mire = Current scientific research in the modern world, 2021, no. 4-2, pp. 215-221. Available at: https://elibrary.ru/item.asp?id=45842964

2. Zohrabi S., Aghbashlo M., Seiiedlou S.S., Scaar H., Mellmann J. Energy saving in a convective dryer by using novel real-time exergy-based control schemes adjusting exhaust air recirculation. Journal of Cleaner Production, 2020, no. 120394. Available at: https://doi.org/10.1016/j.jclepro.2020.120394.

3. Rudak O. G., Korob A. Y. Issledovanie kharaktera izmeneniya vlazhnosti poverkhnostnykh i vnutrennikh sloev drevesiny sosny pri progreve v nenasyshchennoi srede [Investigation of the nature of changes in the humidity of the surface and inner layers of pine wood during heating in an unsaturated environment]. Trudy BGTU. Ser. 1, Lesnoe khozvo, prirodopol'zovanie i pererab. vozobnovlyaemykh resursov = Proceedings of BSTU. Ser. 1, Forest management, nature management and reworking. renewable resources. 2021, no. 1 (240), pp. 162–168. Available at: https://elibrary.ru/item.asp?id=44694941

4. Gorokhovskii A. G., Shishkina E. E. Sintez optimal'noi po bystrodeistviyu sistemy upravleniya sushkoi pilomaterialov [Synthesis of the optimal speed control system for drying lumber]. Sistemy. Metody. Tekhnologii = System. Methods. Technologies, 2021, no. 1 (49), pp. 98-103. Available at: https://elibrary.ru/item.asp?id=44831201

5. Barakhoev M. N. [Comparative characteristics of wood drying methods and determination of the optimal option among them]. Vzglyad molodykh issledovatelei: lesnoi kompleks, ekonomika i upravlenie [The view of young researchers: the forest complex, economics and management], Krasnoyarsk, 2019, pp. 13-18 (In Russ.). Available at: https:// elibrary.ru/item.asp?id=41437883

6. Savin A. M., Stepanova P. A., Sheveleva E. V. Avtomatizatsiya protsessa sushki pilomaterialov v vakuumnykh sushil'nykh kamerakh [Automation of the process of drying lumber in vacuum drying chambers]. Aktual'nye napravleniya nauchnykh issledovanii XXI veka: teoriya i praktika = Current directions of scientific research of the XXI century: theory and practice. 2018, vol. 6, no. 5 (49), pp. 126-129. Available at: https://elibrary.ru/item.asp?id=36702389

7. Mukhametzyanov S. R., Kainov P.A., Safiullina A.K., Mazurkin P.M. Analiz vliyaniya razlichnykh faktorov na skorost' ostsilliruyushchei vakuumno-konduktivnoi sushki pilomaterialov [Analysis of the influence of various factors on the speed of oscillating vacuum-conductive drying of lumber]. Voronezh, 2017, 8 p. Available at: https:// elibrary.ru/item.asp?id=29214599 8. Zheng Z., Keqi W. RBF based sliding mode control method for lumber drying system. Wood and fiber science, 2019, vol. 51, no. 3. https://doi.org/10.22382/wfs-2019-028

8. Nguyen V. V., Shilin A. A., Momot P. M. PLC-based lumber humidity measurement method. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University. 2021; 25(1): 110-121 (In Russ.). https://doi.org/10.21869/2223-1560-2021-25-1-110-121.

9. Maksimenko V. A., Evdokimov V. S., Kalita V. S. Razrabotka metoda nizkotemperaturnoi sushki drevesiny [Development of a method of low-temperature drying of wood]. Tekhnika i tekhnologiya neftekhimicheskogo i neftegazovogo proizvodstva = Equipment and technology of petrochemical and oil and gas production, 2020, pp. 176-177. Available at:https://elibrary.ru/item.asp?id=42638236.

10. Maksimenko V. A., Evdokimov V. S., Raksha I. S. Opytno-ehkmperimental'naya kamera dlya nizkotemperaturnoi sushki drevesiny [Experimental chamber for lowtemperature drying of wood]. Tekhnika i tekhnologiya neftekhimicheskogo i neftegazovogo proizvodstva = Equipment and technology of petrochemical and oil and gas production, 2021, pp. 88-89. Available at: https://elibrary.ru/item.asp?id=44809521

11. Kasimov D. V., Zargaryan Yu. A. Osnovnye printsipy raboty sistem regulirovaniya temperatury i vlazhnosti [Basic principles of operation of temperature and humidity control systems]. Vestnik molodezhnoi nauki Rossii = Bulletin of Youth Science of Russia. 2021, no.2. Available at: https://elibrary.ru/item.asp?id=46710429

12. Kurakova P. S., Voropai N. N. [Comparison of air temperature according to different measuring instruments]. Dvenadtsatoe Sibirskoe soveshchanie i shkola molodykh uchenykh po klimatoekologicheskomu monitoringu [The twelfth Siberian Meeting and the School of young scientists on climate and environmental monitoring]. Tomsk, 2017, pp. 217-218 (In Russ.). Available at: https://elibrary.ru/ item.asp?id=30609906

13. Dmitriev V. M., Gandzha T.V., Gandzha V.V., Panov S.A. Komp'yuternoe modelirovanie vizual'nykh interfeisov virtual'nykh instrumentov i priborov [Computer modeling of visual interfaces of virtual instruments and devices]. Nauchnaya vizualizatsiya = Scientific Visualization, 2016, vol. 8, no. 3, pp. 111-131. http://sv-journal.org/2016-3/09/?lang=ruhttps://elibrary.ru/item.asp?id=26460847

14. Botter-Kuisch H. P., Van den Bulcke J., Baetens J. M., Van Acker J. Cracking the code: real-time monitoring of wood drying and the occurrence of cracks. Wood Science and Technology, 2020. https://doi.org/10.1007/s00226-020-01200-6

15. Nasr M. R. et al. Experimental methods for detecting frosting in cross-flow air-to-air energy exchangers. Experimental Thermal and Fluid Science, 2016, vol. 77, pp. 100-115. doi:10.1016/j.expthermflusci.2016.04.009

16. Shilin A. et al. IA method for measuring the amount of hoar frost formation in the recuperation channels of ventilation systems using the adjustable mathematical model of this rocess. MATEC Web of Conferences. EDP Sciences, 2017, vol. 141, 01032 p. https://doi.org/10.1051/matecconf/201714101032

17. Kulikov R. S., Tsaregorodtsev D. V. Modifitsirovannyi algoritm adaptivnogo fil'tra [Modified adaptive filter algorithm]. Elektronnye sredstva i sistemy upravleniya = Electronic means and control systems, 2017, no. 1-1, pp. 30-32. Available at: https://www.elibrary.ru/item.asp?id=30732318

18. Khokhlovskii V. N. Sovershenstvovanie protsessa razrabotki programmnogo obespecheniya dlya PLK putem generatsii koda iz sozdannoi matematicheskoi modeli ob"ekta upravleniya [Improving the software development process for PLC by generating code from the created mathematical model of the control object]. Modern Science, 2020, no. 9-2, pp. 347-359. Available at: https://www.elibrary.ru/item.asp?id=44003815

19. Ivanova V. R., Ivanov I. YU., Kiselev I. N. Razrabotka avtomatizirovannoi sistemy upravleniya s ispol'zovaniem yazyka programmirovaniya standarta MEHK 61131-3 [Development of an automated control system using the programming language of the IEC 61131-3 standard]. Energobezopasnost' i energosberezhenie = Energy security and energy conservation, 2020, no. 6, pp. 44-49. Available at: https://www.elibrary.ru/item.asp?id=44401104


Review

For citations:


Prohorov S.V., Shilin A.A., Primochkin I.A. Synthesis of an Algorithm for Diagnosing the Operation of Drying Chamber Electric Drives According toTemperature Sensors. Proceedings of the Southwest State University. 2021;25(4):70-83. (In Russ.) https://doi.org/10.21869/2223-1560-2021-25-4-70-83

Views: 249


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)