Preview

Proceedings of the Southwest State University

Advanced search

Information and Measurement System for Monitoring Beams in Building Structures

https://doi.org/10.21869/2223-1560-2021-25-4-29-51

Abstract

Purpose of research. The development of a method and algorithm for reducing measurements of beam identification parameters in an information and measurement system for monitoring building structures with measurement of deflections and recovery of actual values of beam initial parameters and external load when solving the inverse Cauchy problem.

Methods. The solution of the problem is carried out through formulating the transverse bending of the beam according to the Euler – Bernoulli theory using the method of regularization and reduction of measurements by solving the inverse Cauchy problem by means of linear Lagrangian approximation in the procedure of numerical differentiation of the beam deflection function. A methodology is formulated for identifying insignificant beam identification parameters by comparing the deflection of the beam caused by the parameter under study with the sensitivity threshold of measuring instruments. In this case, the modification of the state space of identification parameters with a decrease in its dimension is simulated.

Results. The working capability of the formulated experimental calculation method is confirmed by numerical experiment with a load on the beam in the form of a bending moment, concentrated and (or) constant distributed load. It has been established that when identifying insignificant initial parameters and loads acting on the beam, the reduction of measurements increases the accuracy of restoring the beam identification parameters.

Conclusion. The developed methodology can be used to improve the accuracy of inspection methods of construction facilities at the stage of experimental and theoretical research.

About the Author

A. P. Loktionov
Southwest State University
Russian Federation

 Askold P. Loktionov, Dr. of Sci. (Engineering), Professor of the Department of Power Supply

Researcher ID: P-5434-2015 

50 Let Oktyabrya str. 94, Kursk 305040 



References

1. Chen H-P., Ni Yi-Q. Structural Health Monitoring of Large Civil Engineering Structures. 111 River Street, Hoboken, NI 07030, USA: .John Wiley & Sons Inc.; 2018. 302 p. https://doi.org/10.1002/9781119166641.

2. Kashevarova G. G., Tonkov, Y. L., Tonkov I.L. Intellectual automation of engineering survey of building objects. International Journal for Computational Civil and Structural Engineering, 2017, no. 13(3), pp. 42-57. https://doi.org/10.22337/1524-5845-2017-13-3-42-57 (In Russ.).

3. Shi Z., O’Brien W. Development and implementation of automated fault detection and diagnostics for building systems: A review. Automation in Construction, 2019, no. 104, pp. 215-229. https://doi.org/10.1016/j.autcon.2019.04.002.

4. Lehmhus D., Busse M., Structural Health Monitoring (SHM) in book: Material Integrated Intelligent Systems Technology and Applications: Technology and Applications, 2018, рр. 529–570. https://doi.org/10.1002/9783527679249.

5. Meshchikhin I. A., Gavryushin S. S. The envelope method in the problem of choosing a rational composition of measuring instruments. Measurement Techniques, 2021, no 64, pp. 151-155. https://doi.org/10.1007/s11018-021-01910-8.

6. Perelmuter A.V. [Inverse problems of structural mechanics]. Vestnik Tomskogo gosudarstvennogo arxitekturno-stroitel`nogo universiteta=Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2020; no. 22(4): pp. 83-101. https://doi.org/10.31675/1607-1859-2020-22-4-83-101 (In Russ.).

7. Haque M.E., Zain M.F.M., Hannan M.A., Rahman M.H. Building structural health monitoring using dense and sparse topology wireless sensor network. Smart Structures and Systems, 2015, no. 16(4), pp. 607-621. https://doi.org/10.12989 / sss.2015.16.4.623.

8. Siraya T. N. Methods of data processing in measurements and metrological models. Measurement Techniques, 2018, no 61, pp. 9-16. https://doi.org/10.1007/s11018-018-1380-y.

9. Bakushinsky A.B., Kokurin M.M., Kokurin M.Yu. Regularization Algorithms for IllPosed Problems. Boston. USA: De Gruyter; 2018. https://doi.org/10.1515/9783110557350.

10. Meschikhin I. A., Gavryushin S. S. Quality criteria and algorithm for selecting reduced finite element models for technical design monitoring, Mat. Mod. Chisl. Met., 2016, no 12, pp. 103-121. https://doi.org/10.18698/2309-3684-2016-4-103121 (in Russ.).

11. Loktionov A. P. [Structural regularization of the subsystem of the converting component of converting computing systems]. Kursk, 2009. 323 p. https://elibrary.ru/item.asp?id=19594039 (In Russ.).

12. Huang Y., Ludwig S.A., Deng F. Sensor optimization using a genetic algorithm for structural health monitoring in harsh environments. Journal of Civil Structural Health Monitoring, 2016, no. 6(3), pp. 509-519. https://doi.org/10.1007/s13349-016-0170-y.

13. Ozbey B., Erturk V.B., Demir H.V., Altintas A., Kurc O.A. A wireless passive sensing system for displacement/strain measurement in reinforced concrete members. Sensors, 2016, no. 16(4), pp. 1-14. https://doi.org/10.3390/s16040496.

14. Loktionov A.P. [Information system for analysis of beam elements under combined load]. Stroitel'naya mekhanika i raschet sooruzhenii=Structural Mechanics and Analysis of Constructions. 2021; no. 2, pp. 45–52. https://doi.org/10.37538/0039-2383.2021.2.45.52 (In Russ.).

15. Lalin V.V., Belyaev M.O. [Bending of geometrically nonlinear cantilever beam. Results obtained by Cosserat – Timoshenko and Kirchhoff’s rod theories]. Inzhenernostroitel'nyi zhurnal=Magazine of Civil Engineering. 2015; no. 53(1): pp. 39-55. DOI:10.5862/MCE.53.5. Available at: https://engstroy.spbstu.ru/userfiles/files/2015/1(53)/05.pdf (In Russ.).

16. Wang T., He T., Li H. Effects of deformation of elastic constraints on free vibration characteristics of cantilever Bernoulli-Euler beams. Structural Engineering and Mechanics, 2016, no. 59(6), pp. 1139-1153. https://doi.org/10.12989/sem.2016.59.6.000.

17. Tusnina V.M. Semi-rigid steel beam-to-column connections. Magazine of Civil Engineering, 2017, no. 73(5), pp. 25-39. https://doi.org/10.18720/MCE.73.3. Available at: https://engstroy.spbstu.ru/userfiles/files/2017/5(73)/03.pdf.

18. Tusnina O.A., Danilov A.I. The stiffness of rigid joints of beam with hollow section column. Magazine of Civil Engineering, 2016, no. 64(4), pp. 40-51. https://doi.org/10.5862/MCE.64.4. Available at: https://engstroy.spbstu.ru/userfiles/ files/ 2016/4(64)/04.pdf.

19. Kudryavcev K.Ya. [Algorithm for constructing a polynomial of the best uniform approximation from experimental data]. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"=Bulletin of the National Research Nuclear University MEPhI. 2019; no. 8(5): pp. 480-486. https://doi.org/10.1134/S2304487X1905002X (In Russ.).

20. Kalenchuk-Porkhanova A. Best Chebyshev approximation for compression of big information arrays. In. Proceedings of the 10th International Scientific and Practical Conference named after A. I. Kitov "Information Technologies and Mathematical Methods in Economics and Management (IT&MM-2020)". October 15-16, Moscow: Russia. 2020. pp. 1-13. Available at: http://sunsite.informatik.rwth-aachen.de/ftp/pub/publications/CEURWS/Vol-2830.zip. paper25.pdf.

21. Chekushkin V.V., Mikheev K.V. Fast search algorithms for the best approximation polynomials for reproduction of functional dependences in data-measurement systems. Measurement Techniques, 2016, no. 59(4), pp. 351-356. DOI: 10.1007/s11018-016-0970-9.

22. Loktionov A.P. Improving the polynomial approximation of an object characteristic that is not directly measurable by using measurement reduction. Measurement Techniques, 2017, no. 59(10), pp. 1042-1050. https://doi.org/10.1007/s11018-017-1089-3.

23. Balakin D. A., Pyt’ev Yu. P. Measurement reduction in the presence of subjective information. Mathematical Models and Computer Simulations, 2018, no. 30(12), pp. 84-110. http://www.mathnet.ru/links/8979c74fdee02631a8d8ed00b41bb7be/mm4028.pdf.

24. Loktionov A.P. [On numerical differentiation with polynomial approximation]. Dep. at VINITI 28.06.99, no. 2080-В99. 1999, 28 p. https://elibrary.ru/item.asp?id=24302755 (In Russ.).

25. Korytov M.S., Shcherbakov V.S., Shershneva E.O., Breus I.V. Approximation methods for the actual trajectory of load carried by overhead crane to the required one – a comparative analysis. Journal of the Serbian Society for Computational Mechanics, 2016, no. 10(2), pp. 45-56. Available at: http://www.sscm.kg.ac.rs/jsscm/downloads/Vol10No2/Vol10No2_05.pdf.

26. Yang C. Sensor placement for structural health monitoring using hybrid optimization algorithm based on sensor distribution index and FE grids. Structural Control and Health Monitoring, 2018, no. 5(6), pp. 1-19. https://doi.org/10.1002/stc.2160.

27. Favorskaya A.V., Petrov I.B. Grid-characteristic calculation of multistorey buildings destruction. Mathematical Models and Computer Simulations, 2020, no. 32(3), pp. 102-114. https://doi.org/https://doi.org/10.20948/mm-2020-03-06.

28. Loktionov A.P. Information system for analysis of beam elements under combined load. Structural Mechanics and Analysis of Constructions, 2021, no. 2, pp. 45-52. https://doi.org/ 10.37538/0039-2383.2021.2.45.52.

29. Petrov V.V. [Nonlinear Incremental Structural Mechanics]. Moscow, Vologda, Infra-Inzheneriya Publ., 2020. 484 p. Electronic library system IPR BOOKS: [site], Available at: https://www.iprbookshop.ru/98391.html (In Russ.) (accessed 15.09.2021).

30. Danilov M. F., Savel'eva A. A. Analysis of basic data of unstable problems of coordinate measurements of geometrical parameters of products. Measurement Techniques, 2018, no. 61(6), pp. 588-594. https://doi.org/10.1007/s11018-018-1469-3.

31. Kalitkin N.N., Kolganov S.A. [Construction of approximations that satisfy the Chebyshev alternance]. Preprinty IPM im. M.V. Keldysha= Keldysh Institute PREPRINTS. 2020; no. 91: 33 p. https://keldysh.ru/papers/2020/prep2020_91.pdf (In Russ.).

32. Agafonova I.V., Malozemov V.N. [Extremal polynomials connected with Zolotarev polynomials]. Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya=Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy. 2020; no. 7(65): is. 1, pp. 3-14. https://doi.org/10.21638/11701/spbu01.2020.101 (In Russ.).

33. Malozemov V.N., Tamasyan G.SH. [A study on a polynomial filter problem (n = 3)]. V kn.: Izbrannye lektsii po ehkstremal'nym zadacham. [Selected lectures on extremal problems]. Saint-Petersburg, 2017; pp. 305–315. Available at: http://www.apmath.spbu.ru/cnsa/reps15.shtml#0312 (In Russ.).

34. Ibrahimoglu B.A. Lebesgue functions and Lebesgue constants in polynomial interpolation. Journal of Inequalities and Applications, 2016, no. 2016:93, pp. 1-15. https://doi.org/10.1186/s13660-016-1030-3.

35. Aliyev M.S. [On a classification of linearly independent systems of functions]. Vestnik Dagestanskogo gosudarstvennogo universiteta. Seriya 1: Estestvennye nauki =Herald of Dagestan State University Series 1. Natural Sciences. 2021; no. 36(1), pp. 15-23. https://doi.org/ 10.21779/2542-0321-2021-36-1-15–23 (In Russ.).

36. Loktionov A.P. A measuring system for determination of a cantilever beam support moment. Smart Structures Systems, 2017, no. 19(4), pp. 431-439. https://doi.org/10.12989/sss.2017.19.4.431.

37. Loktionov A.P. Numerical differentiation in the measurement model. Measurement Techniques, 2019, no. 62, pp. 673-680. https://doi.org/10.1007/s11018-019-01677-z.


Review

For citations:


Loktionov A.P. Information and Measurement System for Monitoring Beams in Building Structures. Proceedings of the Southwest State University. 2021;25(4):29-51. (In Russ.) https://doi.org/10.21869/2223-1560-2021-25-4-29-51

Views: 257


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)