Simulation of Deformations of Pre-Stressed Steel Trusses in Emergency Situations
https://doi.org/10.21869/2223-1560-2021-25-2-35-50
Abstract
Purpose of research is to make methodology and algorithm for finite element modeling in a single computational scheme of deformation of flat steel trusses, previously stressed using high-strength ropes, in accordance with the chronology of impacts on the object in the form of prestresses, normative loads and emergency destruction of one of the bearing elements.
Methods. The solution of the problem is carried out in geometrically nonlinear staging using numerical integration based on Newmark approach with the construction of equilibrium equations of the finite element model of the structure in a deformed state at each integration step. Structural nonlinearity related to structural restructuring and consideration of ropes operation for tension only is described. The application of gravity forces of the carrier system, sequential introduction of tightening and their prestress, the application of payload and emergency impact in the form of instantaneous local destruction are traced. Before failure occurs, static loading condition is simulated using dynamic relaxation method. Methodology of accounting within numerical integration of emergency impact is formulated by application of dummy forces, values of which are calculated in excluded structural element before its destruction.
Results. Performance of presented computational procedure is illustrated by the example of a flat steel truss calculation with a span (54 m), including two ropes. Object behavior is considered considering the break of one of the ropes subjected to preliminary stress. It was revealed that the investigated emergency does not lead to the destruction of the second rope and the occurrence of plastic deformations in the truss rods.
Conclusion: Completed developments can be used to ensure the survivability of pre-stressed steel trusses under beyond design basis effects, leading to the destruction of individual structural elements.
Keywords
About the Authors
I. N. SerpikRussian Federation
3 Stanke Dimitrov Ave. Bryansk 241037
N. V. Tarasova
Russian Federation
3 Stanke Dimitrov Ave. Bryansk 241037
References
1. Abdelwahed B. A review on building progressive collapse, survey and discussion. Case Studies in Construction Materials, 2019, no. 11, рр. e00264. https://doi.org/10.1016/j.cscm.2019.e00264.
2. Parisi F., Adam J.M., Sagaseta J., Lu X. Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures, 2018, no. 173, рр. 122-149. https://doi.org/10.1016/j.engstruct.2018.06.082.
3. Geniyev G.A., Kolchunov V.I., Klyuyeva N.V., Nikulin A.I., Pyatikrestovskiy K.P. Prochnost' i deformativnost' zhelezobetonnykh konstruktsii pri zaproektnykh vozdeistviyakh [Strength and deformability of reinforced concrete structures under design impacts]. Moscow, ASV Publ., 2004. 216 р. (In Russ.).
4. Kolchunov V.I., Androsova N.B., Klyuyeva N.V., Bukhtiyarova A.S. Zhivuchest' zdanii i sooruzhenii pri zaproektnykh vozdeistviyakh [Survivability of buildings and structures under beyond design impacts]. Moscow, ASV Publ., 2014. 208 р. (In Russ.).
5. Fengwei S., Wang L., Dong S. Progressive collapse assessment of the steel momentframe with composite floor slabs based on membrane action and energy equilibrium. The Open Construction and Building Technology Journal, 2017, no. 11(1), рр. 200-215. https://doi.org/10.2174/1874836801711010200.
6. Kolchunov V.I., Savin S.Yu. Survivability criteria for reinforced concrete frame at loss of stability. Magazine of Civil Engineering, 2018, no. 80(4), pp. 73-80. https://doi.org/10.18720/MCE.80.7.
7. Semenov A.A., Poryvayev I.A., Kuznetsov D.V., Nguyen T.Kh., Saitgalina A.S., Tregubova Ye.S. Napryazhenno-deformirovannoe sostoyanie vysotnogo zdaniya pri vetrovom vozdeistvii i progressiruyushchem obrushenii [Stress-strain state of high-rise building under wind load and progressive collapse]. Stroitel'stvo unikal'nykh zdaniy i sooruzheniy = Construction of Unique Buildings and Structures, 2017, no. 59(8), рр. 7-26 (In Russ). https://doi.org/10.18720/CUBS.59.1.
8. Travush V.I., Fedorova N.V. Survivability of structural systems of buildings with special effects. Magazine of Civil Engineering, 2018, no. 81(5), pp. 73–80. https://doi.org/10.18720/MCE.81.8.
9. Serpik I.N., Mironenko I.V. Metodika otsenki nagruzhennosti konstruktsii pri zaproektnykh vozdeistviyakh s uchetom nelineinoi raboty materialov [The method for estimation of stress loading of structures at emergency actions with account of materials nonlinearity]. Stroitel'stvo i rekonstruktsiya = Construction and Reconstruction, 2012, no. 42(4), рр. 54-60 (In Russ).
10. Chen C.H., Zhu Y.F., Yao Y., Huang Y. Progressive collapse analysis of steel frame structure based on the energy principle. Steel and Composite Structures, 2016, no. 21(3), рр. 553-571. http://dx.doi.org/10.12989/scs.2016.21.3.553.
11. Szyniszewski S., Krauthammer T. Energy flow in progressive collapse of steel framed buildings. Engineering Structures, 2012, no. 42, рр. 142-153. http://doi.org/10.1016/j.engstruct.2012.04.014.
12. Gerasimidis S., Sideri J. A new partial-distributed damage method for progressive collapse analysis of steel frames. Journal of Constructional Steel Research, 2016, no. 119, рр. 233245. http://doi.org/10.1016/j.jcsr.2015.12.012.
13. Kim H.S., Ahn J.G., Ahn H.S. Numerical simulation of progressive collapse for a reinforced concrete building. Engineering and Technology International Journal of Civil and Environmental Engineering, 2013, no. 7(4), рр. 272-275. http://doi.org/10.5281/zenodo.1060737.
14. Serpik I.N., Kurchenko N.S., Alekseytsev A.V., Lagutina A.A. Analiz v geometricheski, fizicheski i konstruktivno nelineinoi postanovke dinamicheskogo povedeniya ploskikh ram pri zaproektnykh vozdeistviyakh [Analysis of the dynamic behavior of plane frames at emergency actions considering geometrical, material and structural nonlinearities]. Promyshlennoye i grazhdanskoye stroitel'stvo = Industrial and Civil Engineering, 2012, no. 10, рр. 49-51 (In Russ.).
15. Stephen D., Lam D., Forth J., Ye J., Tsavdaridis K.D. An evaluation of modeling approaches and column removal time on progressive collapse of building. Journal of Constructional Steel Research, 2019, no. 153, рр. 243-253. http://doi.org/10.1016/J.JCSR.2018.07.019.
16. Serpik I.N., Alekseytsev A.V. Optimizatsiya ramnykh konstruktsii s uchetom vozmozhnosti zaproektnykh vozdeistvii [Optimization of frame structures with possibility of emergency actions]. Inzhenerno-stroitel'nyy zhurnal = Magazine of Civil Engineering, 2013, no. 44(9), pp. 23-29 (In Russ). http://doi.org/10.5862/MCE.44.3.
17. Elsanadedy H.M., Almusallam T.H., Al-Salloum Y.A., Abbas H. Investigation of precast RC beam-column assemblies under column-loss scenario. Construction and Building Materials, 2017, no. 142, рр. 552-571. http://doi.org/10.1016/j.conbuildmat.2017.03.120.
18. Tsai M.-H. An approximate analytical formulation for the rise-time effect on dynamic structural response under column loss. International Journal of Structural Stability and Dynamics, 2018, no. 18(3), рр. 1850038. http://doi.org/10.1142/s0219455418500384.
19. Feng D.-C., Wang Z., Wu G. Progressive collapse performance analysis of precast reinforced concrete structures. The Structural Design of Tall and Special Buildings, 2019, no. 28(5), рр. e1588. https://doi.org/10.1002/tal.1588.
20. Ventura A., De Biagi V., Chiaia B. Structural robustness of RC frame buildings under threat-independent damage scenarios. Structural Engineering and Mechanics, 2018, no. 6(65), рр. 689-698. https://doi.org/10.12989/sem.2018.65.6.689.
21. Mohamed O., Khattab R. Assessment of progressive collapse resistance of steel structures with moment resisting frames. Buildings, 2019, no. 9(1), рр. 19. https://doi.org/10.3390/buildings9010019.
22. Kolchunov V.I., Fedorova N.V., Savin S.Yu., Kovalev V.V., Iliushchenko T.A. Failure simulation of a RC multi-storey building frame with prestressed girders. Magazine of Civil Engineering, 2019, no. 92(8), рр. 155-162. https://doi.org/10.18720/MCE.92.13.
23. Jiang, H., Wang, J., Chorzepa, M. G., Zhao, J. Numerical investigation of progressive collapse of a multispan continuous bridge subjected to vessel collision. Journal of Bridge Engineering, 2017, no. 22(5), рр. 04017008. https://doi.org/10.1061/(asce)be.1943-5592.0001037.
24. Cai J., Xu Y., Zhuang L., Feng J., Zhang J. Comparison of various procedures for progressive collapse analysis of cable-stayed bridges. Journal of Zhejiang University SCIENCE A, 2012, no. 13(5), рр. 323-334. https://doi.org/10.1631/jzus.a1100296.
25. Bathe K.J. Finite element procedures. Watertown, MA, USA, 2016.
26. Zienkiewicz O.C., Taylor R.L., Fox D. The finite element method for solid and structural mechanics. Elsevier, Oxford, 2014.
27. Papageorgiou A.V., Gantes C.J. Equivalent modal damping ratios for concrete/steel mixed structures. Computers & Structures, 2010, no. 88(19-20), pp. 1124-1136. http://dx.doi.org/10.1016/j.compstruc.2010.06.014.
Review
For citations:
Serpik I.N., Tarasova N.V. Simulation of Deformations of Pre-Stressed Steel Trusses in Emergency Situations. Proceedings of the Southwest State University. 2021;25(2):35-50. (In Russ.) https://doi.org/10.21869/2223-1560-2021-25-2-35-50