Mathematical Model for Automated Heat Flow Control of an EnergyEfficient Ventilation System
https://doi.org/10.21869/2223-1560-2021-25-1-38-52
Abstract
Purpose of research. In modern ventilation and air conditioning systems (VAC), one of the main components is an automatic control system (ACS) which performs various functions and also provides highly efficient operation in the range from shutdown functions to centralized regulation and control of climate parameters (temperature, humidity, monitoring concentrations of harmful substances, air speed). The goal is to study a mathematical model of heat flow control of a supply and exhaust ventilation system with a builtin integrated recuperative heat exchanger for the purpose of utilization of low-temperature heat of ventilation gases and emissions with the associated production of thermoelectricity.
Methods. To achieve these goals, we used methods of mathematical simulation and computational model development. The automatic control of VAC is based on the principle of feedback – regulation of processes by obtaining information from external sensors based on mathematical simulation of physical processes occurring in the building or structure serviced.
Results. An experimental supply and exhaust system with a plate heat exchanger-recuperator operates in a quasi-steady heat transfer mode. Exhaust air removed from the room is used as a heating medium. At the same time, the system is controlled using an independent scheme of connection to the heat supply system. The air heated in the room is considered as an incompressible gas, the heat exchange between the heating and heated heat transfer media is a steadystate process, the turbulence of the heating and heated flow of heat transfer media is isotropic. The result of the study is a mathematical model of heat flow control in the supply and exhaust ventilation system with a builtin integrated heat exchanger-recuperator. The optimal values of the heat energy consumed and the parameters of the ventilation system operation are obtained.
Conclusion. A mathematical model of heat flow control in a supply and exhaust ventilation system with a builtin integrated heat exchanger-recuperator is proposed and investigated. The optimal values of the consumed heat energy and the parameters of the ventilation system operation are obtained.
Keywords
About the Authors
V. S. YezhovRussian Federation
Vladimir S. Yezhov, Dr. of Sci. (Engineering), Professor
50 Let Oktyabrya str. 94, Kursk 305040
Competing Interests:
The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.
N. E. Semicheva
Russian Federation
Natalya E. Semicheva, Cand. of Sci. (Engineering), Associate Professor
50 Let Oktyabrya str. 94, Kursk 305040
Competing Interests:
The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.
D. N. Tyutyunov
Russian Federation
Dmitrij N. Tyutyunov, Cand. of Sci. (Engineering), Associate Professor, Associate Professor of Higher Mathematics Department
50 Let Oktyabrya str. 94, Kursk 305040
Competing Interests:
The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.
A. P. Burtsev
Russian Federation
Alexey P. Burtsev, PostGraduate Student
50 Let Oktyabrya str. 94, Kursk 305040
Competing Interests:
The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.
N. S. Perepelitsa
Russian Federation
Nikita S. Perepelitsa, Undergraduate
50 Let Oktyabrya str. 94, Kursk 305040
Competing Interests:
The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.
A. P. Burtsev
Russian Federation
Alexander P. Burtsev, Student, Department of Mechanics, Mechatronics and Robotics
50 Let Oktyabrya str. 94, Kursk 305040
Competing Interests:
The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.
References
1. Arkhipov T. V. Avtomaticheskoe regulirovanie ventilyatsii i konditsionirovaniya vozdukha [Automatic regulation of ventilation and air conditioning]. Moscow, 2012. 242 p. (In Russ.).
2. Polevoy A. A. Avtomatizatsiya kholodil'nykh ustanovok i sistem konditsionirovaniya vozdukha [Automation of refrigeration units and air conditioning systems]. Moscow, 2011. 244 p. (In Russ.).
3. Shtokman E. A., Skorik T. A. Osnovy otopleniya i ventilyatsii [Fundamentals of heating and ventilation]. Moscow, 2011. 352 p. (In Russ.).
4. Galperin L. G. Modelirovanie teplovykh protsessov [Modeling of thermal processes]. Moscow, 2011. 112 p. (In Russ.).
5. Fedorov S. S., Tyutyunov D. N., Klyueva N. V. K voprosu modelirovaniya protsessa upravleniya sistemoi teplosnabzheniya resursoeffektivnykh zdanii [On the issue of modeling the process of controlling the heat supply system of resource-efficient buildings]. Stroitel'stvo i rekonstruktsiy = Construction and Reconstruction, 2014, no. 1, pp. 86-89 (In Russ.).
6. Fedorov S. S., Tyutyunov D. N., Kobelev N. S. Matematicheskaya model' sistemy avtomatizirovannogo regulirovaniya parametrov teplonositelya otaplivaemykh zdanii [Mathematical model of automated control of heat parameters of heated buildings]. Izvestiya Kurskogo gosudarstvennogo technicheskogo universiteta = Proceedings of the Kursk State Technical University, 2010, no.3(32), pp. 40-44 (In Russ.).
7. Fedorov S. S., Tyutyunov D. N., Kobelev N. S. Algoritm avtomaticheskogo upravleniya privodom sistemy otopleniya zdanii i sooruzhenii [An Algorithm for automatic drive control of the heating system of buildings and structures]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2011, no. 5, pt. 2, pp. 355-359 (In Russ.).
8. Fedorov S. S. Sistema upravleniya protsessom teplosnabzheniya pri zavisimom prisoedinenii k teplovym setyam [Process control System of a heat supply at a dependent Association to calorific nets]. Stroitel'stvo i rekonstruktsiy = Construction and Reconstruction, 2014, no. 5, pp. 106-110 (In Russ.).
9. Fedorov S. S., Kobelev N. S., Minko V. A. et al. Sistemy avtomatizirovannogo regulirovaniya parametrov teplonositelya otaplivaemykh zdanii [Systems of automated regulation of parameters of the heat carrier of heated buildings]. Vestnik BGTU im. V.G. Shukhova = Bulletin of BSTU named after V. G. Shukhov, 2010, no. 4, pp. 111-115 (In Russ.).
10. Fedorov S. S., Tyutyunov D. N., Klyueva N. V. Upravlenie sistemoi otopleniya zdanii s pozitsii resursosberezheniya [Management of the heating system of buildings from the position of resource saving]. Stroitel'stvo i rekonstruktsiy = Construction and Reconstruction, 2013, no. 5, pp. 36-39 (In Russ.).
11. Burtsev A. P., Gerasimov M. S. [Development and application of the SOFT-START soft-START scheme]. Sbornik nauchnykh statei 4-i Vserossiiskoi nauchnoi konferentsii perspektivnykh razrabotok molodykh uchenykh "Molodezh' i nauka: shag k uspekhu" [Collection of scientific articles of the 4th All-Russian scientific conference of promising developments of young scientists "Youth and science: a step to success"]. Kursk, 2020, pp. 60-64 (In Russ.).
12. Burtsev A. P., Kochergin O. B. [Modernization of DC-DC converter based on MT3608 microchip]. Sbornik nauchnykh statei 10-oi Mezhdunarodnoi nauchnoprakticheskoi konferentsii "Perspektivnoe razvitie nauki, tekhniki i tekhnologii" [Collection of scientific articles of the 10th International scientific and practical Conference "Perspective development of science, technology and technologies]. Kursk, 2020, pp. 27-31 (In Russ.).
13. Burtsev A. P. [Creation of a PWM signal regulation scheme based on a logic chip]. Sbornik nauchnykh statei 4-i Vserossiiskoi nauchnoi konferentsii perspektivnykh razrabotok molodykh uchenykh "Molodezh' i nauka: shag k uspekhu" [Collection of scientific articles of the 4th All-Russian scientific conference of promising developments of young scientists "Youth and science: a step to success"]. Kursk, 2020, pp. 257-260 (In Russ.).
14. Yezhov V. S., Burtsev A. P., Perepelitsa N. S., Burtsev A. P. [Research of heat transfer in thermoelectric converters]. Sbornik nauchnykh trudov 4-i Mezhdunarodnoi nauchno-prakticheskoi konferentsii molodykh uchenykh, aspirantov, magistrov i bakalavrov "Proektirovanie i stroitel'stvo" [Collection of scientific works of the 4th International scientific and practical conference of young scientists, postgraduates, masters and bachelors "Design and construction"]. Kursk, 2020, pp. 117-121(In Russ.).
15. Ezhov V. S., Russia N. E. Burtsev A. P., Perepelitsa N. S, Popova M. E. [Development of methods for determining characteristics of the structure of an integrated plate exchanger in the utilization of low-grade heat waste gas and air emissions]. Sbornik nauchnykh trudov 2-i Vserossiiskoi nauchnoi konferentsii "Problemy i perspektivy razvitiya Rossii: molodezhnyi vzglyad v budushchee" [Collection of scientific works of the 2nd Russian scientific conference "Problems and prospects of development of Russia: youth look to the future"]. Kursk, 2019, pp. 178-182 (In Russ.).
16. Ezhov V. S., Burtsev A. P., Perepelitsa N. S. [Development of an innovative design of an autonomous thermoelectric EMF source for use in heat supply systems]. Sbornik nauchnykh trudov 10-i Mezhdunarodnoi nauchnoi konferentsii "Molodezh' i XXI vek - 2020". [Collection of scientific works of the 10th International Scientific Conference "Youth and the XXI century-2020"]. Kursk, 2020, pp. 245-248 (In Russ.).
17. Ezhov V., Brezhnev A., Burtsev A., Bredikhina N., Burtsev A. Basic calculation based on the direct conversion of the heat into electricity for IHP [Basic calculation based on the direct conversion of the heat into electricity for IHP]. Conference proceedings 7th international conference contemporary achievements in civil engineering. Subotica, SERBIA, 2019.
18. Ezhov V. S., Semicheva N. E., Burtsev A. P., Perepelitsa N. S., Ermakov D. A., Burtsev A. P. [Development of an experimental design of a complex air heater for utilization of low-potential heat of waste ventilation emissions]. Sbornik nauchnykh statei Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Sovremennye problemy v stroitel'stve: postanovka zadach i puti ikh resheniya» [Collection of scientific articles of the International scientific and practical Conference "Modern problems in construction: statement of tasks and ways of their solution"]. Kursk, 2019, pp. 225-233 (In Russ.).
19. Ezhov V. S., Semicheva N. E., Burtsev A. P., Zenchenkov V. I., Ermakov D. A. Issledovanie protsessa generatsii termoelektrichestva pri utilizatsii nizkopotentsial'nogo tepla cbrosnykh gazov [Investigation of the process of generating thermoelectricity in the utilization of low-potential heat of waste gases]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2019, no.23(2), pp. 74-84 (In Russ.). (In Russ.).
20. Ezhov V. S., Semicheva N. E., Burtsev A. P., Sokolov S. M., Perepelitsa N. S. Termoelektricheskii istochnik elektrosnabzheniya dlya teplovogo punkta [Thermoelectric power supply source for a thermal point]. Patent RF, no. 2705348, 2019. (In Russ.).
Review
For citations:
Yezhov V.S., Semicheva N.E., Tyutyunov D.N., Burtsev A.P., Perepelitsa N.S., Burtsev A.P. Mathematical Model for Automated Heat Flow Control of an EnergyEfficient Ventilation System. Proceedings of the Southwest State University. 2021;25(1):38-52. (In Russ.) https://doi.org/10.21869/2223-1560-2021-25-1-38-52