Preview

Proceedings of the Southwest State University

Advanced search

Application of Adaptive Three-Position Control in the System of Automated Control of a Thermal Object

https://doi.org/10.21869/2223-1560-2020-24-4-230-243

Abstract

Purpose of research. The control object was considered to be a thermal unit in the form of a modified two-tier tunnel furnace designed for the production of foam glass blocks. The main goal of this work was to improve the quality of products, reduce defects, and ultimately increase productivity by developing an automated system for controlling the thermal field of a technological unit for the production of foam glass blocks using an adaptive three-position control law with adaptation to the load of the average position of the regulator.
Methods. At the initial stage, a functional automation scheme for a modified two-tier tunnel furnace was developed. To model dynamic discrete systems, a mathematical apparatus was used in the form of labeled Petri nets, which resulted in algorithmization of the technological process for the production of foam glass blocks. This solution to the problem should be used as a method of algorithmization and programming of the logic controller that is part of the automation system structure. The developed functional automation scheme can be converted into a mnemonic circuit, thereby implementing a SCADA system designed for control and visualization, diagnostics and monitoring of the process at a centralized control point, which is part of the automated workplace of the operator-technologist. The described approach to the development of an automated process control system has a generalized representation. The solution is methodological in nature, demonstrating the usability of the model in the form of a labeled Petri net.
Results. In the course of research, a graph of operations of the production process with discrete adaptive threeposition control of the average position under load was developed. To check the correctness of the graph of operations, a tree of achievable markings was built, and its analysis was performed for compliance with security conditions and network liveliness. A block diagram of the main algorithm and the algorithm for adapting the controller's control program is developed.
Conclusion. The described approach to the development of an automated process control system for the production of foam glass blocks has a generalized character, although it is illustrated by applying it to a specific object , since it allows changing both the number of variables xi , zi, and their functional purpose, that is, instead of sensors, pushers, valves, parameter values, for example, temperature, other automation elements and other physical variables and their parameters can be used. Thus, the presented solution is methodological in nature, demonstrating the convenience of using the model in the form of a Petri net and a tree of achievable markings for algorithmization and programming of a logic controller that is part of the automation system structure.

About the Authors

V. G. Rubanov
Belgorod State Technological University named after V.G.Shukhov
Russian Federation

Vasiliy G. Rubanov, Dr. of Sci. (Engineering), Professor

46 Kostyukova str., Belgorod 308012



D. V. Velichko
Belgorod State Technological University named after V.G.Shukhov
Russian Federation

Dmitry V. Velichko, Associate Professor

46 Kostyukova str., Belgorod 308012



D. A. Bushuev
Belgorod State Technological University named after V.G.Shukhov
Russian Federation

Dmitry A. Bushuev, Cand. of Sci. (Engineering), Associate Professor

46 Kostyukova str., Belgorod 308012



References

1. Demidovich B.K. Penosteklo [Foam glass]. Minsk, Nauka i tehnika Publ., 1975. 248 p. (In Russ.).

2. Shill F. Penosteklo. Proizvodstvo i primenenie [Foam glass. Production and application]. Moscow, Strojizdat Publ., 1965. 308 p. (In Russ.).

3. Min'ko N.I., Puchka O.V., Evtushenko E.I. [et al.]. Penosteklo – sovremennyj jeffektivnyj neorganicheskij teploizoljacionnyj material [Foam glass is a modern effective inorganic thermal insulation material]. Fundamental'nye issledovanija. Tehnicheskie nauki = Funamental research. Technical Science, 2013, no. 6, pp. 849-854 (In Russ.).

4. Sevost'janov V.S., Kononyhin V.S., Zubakov A.P. Tehnika i bezothodnaja tehnologija proizvodstva penostekla [Techniques and waste-free foam glass production technology]. Stroitel'stvo = Construction, 2000, no. 10, pp. 74-79 (In Russ.).

5. Rubanov V.G., Velichko D.V., Lutsenko O.V. Mathematical model of temperature field dynamics in complex shaped glass articles during firing. Glass and Ceramics, 2018, no. 5-6 (75), pp. 171-176.

6. Rubanov V.G., Velichko D.V., Lutsenko O.V. Matematicheskaja model' temperaturnogo polja stekloizdelij slozhnoj konfiguracii pri ih otzhige [Mathematical model of temperature field dynamics in complex shaped glass articles during firing]. Steklo i keramika = Glass and Ceramics, 2018, no. 5, pp. 3-8 (In Russ.).

7. Velichko D.V., Magergut V.Z. Postroenie determinirovannoj i stohasticheskoj dinamicheskih modelej processa nagreva penostekol'noj shihty [Construction of Deterministic and stochastic dynamic models of the foam glass charge heating process]. Vestnik Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V.G. Shuhova = Bulletin of the Belgorod State Technological University named after V. G. Shukhov, 2015, no. 2, pp. 90- 94 (In Russ.).

8. Velichko D.V., Rubanov V.G. [Mathematical modeling of heat and moisture transfer processes during heating of foam glass charge]. Matematicheskie metody v tehnike i tehnologijah [Mathematical methods in engineering and technology]. Saratov, 2010, vol. 3, pp.18-21 (In Russ.).

9. Velichko D.V., Rubanov V.G. [Mathematical modeling of heat-technological processes with interfacial transition]. Matematicheskie metody v tehnike i tehnologijah [Mathematical methods in engineering and technology]. Saratov, 2008, vol. 3, pp. 53-55 (In Russ.).

10. Gorodov R.V. Jeksperimental'noe opredelenie zavisimosti temperaturoprovodnosti penostekol'noj shihty ot temperatury [Experimental determination of the temperature dependence of the foam glass charge on the temperature]. Izvestija Tomskogo politehnicheskogo universiteta = Bulletin of the Tomsk Polytechnical University, 2009, vol. 314, no. 4, pp. 33-37 (In Russ.).

11. Velichko D.V., Rubanov V.G. [Parametric Identification of a thermodynamic rapid analysis system]. Matematicheskie metody v tehnike i tehnologijah [Mathematical methods in engineering and technology]. Saint-Peterburg, 2018, vol. 3, pp. 22-26 (In Russ.).

12. Magergut V.Z., Velichko D.V., Kostin S.V. [Adaptive three-position control in the tunnel furnace control system]. Matematicheskie metody v tehnike i tehnologijah [Mathematical methods in engineering and technology]. Saratov, 2016, vol. 4, pp. 44-47 (In Russ.).

13. Magergut V.Z., Velichko D.V., Andreev A.A. [Automation of a two-tier tunnel furnace using an adaptive three-position controller]. Matematicheskie metody v tehnike i tehnologijah [Mathematical methods in engineering and technology]. Saratov, 2015, vol. 8, pp. 133-139 (In Russ.).

14. Magergut V.Z., Velichko D.V., Andreev A.A. Sistema avtomaticheskogo peremeshhenija tiglej v dvuhjarusnoj tunnel'noj pechi dlja proizvodstva penostekol'nyh blokov [Automatic crucible transfer system in a two-tier tunnel furnace for the production of foam glass blocks]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniia = PNRPU Bulletin. Electrotechnic, Informational Technologies, Control Systems, 2015, no. 14, pp. 108-122 (In Russ.).

15. Romannikov D.O., Markov A.V. Ob ispol'zovanii programmnogo paketa CPN Tools dlja analiza setej Petri [About using the CPN Tools software package for Petri net analysis]. Sbornik nauchnyh trudov Novosibirskogo gosudarstvennogo tehnicheskogo universiteta = Transaction of Scientific Papers of the Novosibirsk State Technical University, 2012, no. 2 (68), pp. 105-116 (In Russ.).

16. Porhalo V.A., Bazhanov A.G., Magergut V.Z. Informacionnye predstavlenija adaptivnogo trjohpozicionnogo algoritma dlja ego apparatnyh i programmnyh realizacij [Information representations of an adaptive three position algorithm for its hardware and software implementations]. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta = Belgorod State University Scientific Bulletin, 2011, no. 1 (96), pp. 161-168 (In Russ.).

17. Rubanov, V.G., Kizhuk A.S., Lucenko O.V. [et al.] Avtomatizirovannaja sistema upravlenija proizvodstvom penostekol'nyh teploizolirujushhih oblicovochnyh blokov [Automated production management system for foam glass thermal insulation facing blocks]. Stroitel'stvo = Construction, 2000, no. 10, pp. 93-97 (In Russ.).

18. Il'jushin Ju.V. Proektirovanie sistemy upravlenija temperaturnymi poljami tunnel'nyh pechej konvejernogo tipa [Design of the temperature field control System for conveyor type tunnel furnaces]. Nauchno-tehnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politehnicheskogo universiteta. Informatika. Telekommunikacija. Upravlenie = St. Peterburg Polytechnical University Journal. Computer Science. Telecommunication and Control Systems, 2011, no. 3, pp. 67-72 (In Russ.).

19. Judickij S.A., Magergut V.Z. Logicheskoe upravlenie diskretnymi processami [Logical management of discrete processes]. Moscow, Mashinostroenie Publ., 1987. 176 p. (In Russ.).

20. Volynskii V.A., Ivakhnyuk V.A., Kolchunov V.I., Kononykhin V.S., Mal'tsev A.N., Novichkov S.G., Titarenko Yu.D., Uvarov V.A. Tunnel'naya pech'-utilizator [Tunnel heat recovery furnace]. Patent RF, no. 99111279/03, 27.02.2000. (In Russ.).


Review

For citations:


Rubanov V.G., Velichko D.V., Bushuev D.A. Application of Adaptive Three-Position Control in the System of Automated Control of a Thermal Object. Proceedings of the Southwest State University. 2020;24(4):230-243. (In Russ.) https://doi.org/10.21869/2223-1560-2020-24-4-230-243

Views: 398


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)