Preview

Proceedings of the Southwest State University

Advanced search

Computer-Aided Design of the Robotic Platform Control System Using Adams and Matlab

https://doi.org/10.21869/2223-1560-2020-24-4-217-229

Abstract

Purpose of research. The purpose of this study is to assess the possibility of developing and simulating an optimal control system for the longitudinal movement of a robocars according to the criterion of maximum speed by using the MSC.Adams virtual modeling system and the MATLAB mathematical modeling package
Methods. One of the research approaches is system modeling, while a virtual modeling system is used as a software tool for synthesizing a virtual physical model of a robot, and a package of application programs for solving technical computing problems MATLAB and a graphical environment for simulation Simulink are used to model a control system. The Pontryagin maximum principle is used as a synthesis method for the longitudinal displacement control system, and the maximum speed is used as an optimality criterion.
Results: The structure of the control system for a robotic platform is presented; an optimal control algorithm is developed and implemented in the Simulink environment. The structure of the physical model management system with data transfer to Adams has been developed. The acceleration curves and the phase portrait of the model control system during the longitudinal movement of the robotic platform are presented and analyzed.
Conclusion. As can be seen from the above simulation results, the optimal positional control law, which implements the maximum principle, fulfills the task with the required quality indicators. In this regard, the proposed algorithm can be used in the development of control systems for the longitudinal movement of mobile robots. Joint modeling of the virtual prototype and the object control system in the Matlab and Adams environment avoids the production of a fullscale model and makes it possible to take into account the physical properties of the object without creating an analytical model.

About the Authors

V. A. Porkhalo
Belgorod State Technological University named after V.G.Shukhov
Russian Federation

Vasily A. Porkhalo, Cand. of Sci. (Engineering), Associate Professor of the Engineering Cybernetics Department

46 Kostyukova str., Belgorod 308012



V. G. Rubanov
Belgorod State Technological University named after V.G.Shukhov
Russian Federation

Vasily G. Rubanov, Dr. of Sci. (Engineering), Professor, Head of the Department of Engineering Cybernetics

46 Kostyukova str., Belgorod 308012



A. G. Bazhanov
Belgorod State Technological University named after V.G.Shukhov
Russian Federation

Alexander G. Bazhanov, Cand. of Sci. (Engineering), Associate Professor of the Engineering Cybernetics Department

46 Kostyukova str., Belgorod 308012



О. V. Lutcenko
Belgorod State Technological University named after V.G.Shukhov
Russian Federation

Oksana V. Lutsenko, Cand. of Sci. (Engineering), Associate Professor of the of Standardization and Quality Management Department

46 Kostyukova str., Belgorod 308012



References

1. Viger I. Features of virtual prototyping technology at all stages of the product lifecycle // CAD/CAM/CAE Observer, 2016, no. 8 (108), pp. 48–53.

2. Bui, T. L., Doan P.T., Park S.S., Kim H. K., Kim S. B. AGV Trajectory Control Based on Laser Sensor Navigation. International Journal of Science and ing, 2013, vol. 4(1), 16-20, pp. 39–43.

3. Ivanjko E., Petrinić T., Petrović I. Modelling of Mobile Robot Dynamics. EUROSIM 2010, 7th EUROSIM Congress on Modelling and Simulation, Prague, Czech Republic, 06- 10.09.2010. Prague, 2010, vol. 2, 9 p. Available at: http://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCcQFjAA&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F228561343_Modelling_of_Mobile_Robot_Dynamics%2Ffile%2F504635256b78692e72.pdf&ei=V7lbU7HuAuGfyQPI8YG4DA&usg=AFQjCNHkX15eujeaVwSrM8F1ueQByAgHJQ&sig2=mx3Ba0ecN3b-6WsJqVJWbQ&bvm=bv.65397613,d.bGE.

4. Suárez J. I., Vinagre B.M., Gutierrez F., Naranjo J. E., Chen Y. Q. Dynamic Models of an AGV Based on Experimental Results. 5th Symposium Intelligent autonomous vehicles. Oxford, 2005, vol. 1, pp. 275-280.

5. Rybin I. A., Rubanov V. G., Aparshev S. A. [Hybrid model of the dynamics of a mobile robot]. Matematicheskie metody v tekhnike i tekhnologiyakh – MMTT 25 sb. trudov XXV Mezhdunar. nauch. konf. [Mathematical Methods in Engineering and Technology – MMTT- 25. coll. of proceedings of the XXV Intern. scientific Conf.]. Vol. 10. Section 12. Kharkov; 2012, pp. 6–8 (In Russ.).

6. Shekhovtsov Y. A., Rybin I. A., Rubanov V. G. [Hybrid modeling of transport and storage processes using robokars]. Matematicheskie metody v tekhnike i tekhnologiyakh – MMTT 23 [Mathematical Methods in Engineering and Technology –MMTT-23: coll. of proceedings of the XXIII International scientific conf.]. Saratov, 2010, vol. 5, section 5, pp. 238–248 (In Russ.).

7. Gerasimov V.N., Mikhailov B.B. Reshenie zadachi upravleniya dvizheniem mobil'nogo robota pri nalichii dinamicheskikh prepyatstvii [Solving the problem of controlling the movement of a mobile robot in the presence of dynamic obstacles]. Vestnik MGTU im. N.E. Baumana. Priborostroenie. Spetsvypusk "Robototekhnicheskie sistemy" = Vestnik BMSTU. Instrumentation. Special issue "Robotic Systems", 2012, no. 6, pp. 83 – 92 (In Russ.).

8. Rybin I. A., Rubanov V. G., Duun T. A. Sposob issledovaniya dvizheniya mobil'- nogo robota na statsionarnoi ustanovke udalennogo dostupa [Method for studying the movement of a mobile robot on a stationary remote access installation]. Pribory i sistemy. Upravlenie, kontrol', diagnostika = Devices and Systems. Management, Monitoring, Diagnostics, 2014, no.11, pp. 14–21 (In Russ.).

9. Zenkevich S. L., Nazarova A.V. Sistema upravleniya mobil'nogo kolesnogo robota [Mobile wheeled robot control system]. Vestnik MGTU im. N.E. Baumana. Ser. "Priborostroenie" = Bulletin of the Bauman Moscow State Technical University. "Instrument making", 2006, no. 3, pp. 31 – 51 (In Russ.).

10. Laumond J.-P., ed. Robot motion planning and control (Lectures Notes in Control and Information Sciences, vol. 229). Berlin, Springer, 1998, 343 p.

11. Kristensen S., Horstmann S., Klandt J., Lohner F., Stopp A. Human-friendly interaction for learning and cooperation. Proceedings of the 2001 IEEE International Conference on Robotics and Automation. Seoul, Korea, 2001, pp.2590 - 2595.

12. Ulas C., Temeltas H. Multi-Layered Normal Distribution Transform for Fast and Long Range Matching. Journal of Intelligrnt & Robotic Systems, 2013, vol. 71 (1), pp. 85 – 108.

13. Bobyr M. V., Titov V. S. Myagkii neironechetkii algoritm upravleniya mobil'nym robotom [Soft neuro-fuzzy control algorithm for mobile robot]. Izvestiya YuFU. Tekhnicheskie nauki = Izvestiya YUFU. Technical Science, 2015, no. 10 (171), pp. 144-157 (In Russ.).

14. Pontryagin L.S., Boltyanskiy V.G. Matematicheskaya teoriya optimal'nykh protsessov [The mathematical theory of optimal processes]. Moscow, Fizmatizdat Publ., 1969. pp. 338.

15. Sethi S.P., Thompson G.L. Optimal control theory: applications to management science and economics. Berlin, Springer, 2005. 521 p. (In Russ.).

16. Chernousko F.L., Bolotnik N.N., Gradetsky V.G. [Mobile robots: problems of control and optimization of movements]. Sb. trudov. nauch. konf. VSPU-2014 [Sat works. scientific conf. VSPU-2014]. 2014, pp. 67–78 (In Russ.).

17. Porkhalo V.A., Rubanov V.G., Kostin S.V. [Improving the survivability of robotic vehicles in an automated warehouse]. Matematicheskie metody v tekhnike i tekhnologiyakh. Sb. tr. mezhdunar. nauch. konf. [Mathematical methods in engineering and technology. Proceedings of the international. scientific Conf.]. Saint-Petersburg, 2017, Vol. 4 pp. 100–104 (In Russ.).

18. Rubanov V. G., J. Lyakurwa.P., Porkhalo V. A. Modelirovanie dinamiki dvizheniya mobil'nogo robota v srede Matlab [Modeling of dynamics of movement of a mobile robot in the Matlab environment]. Izvestiya TulGU = Izvestiya TulGU, 2006, no. 1, pp. 126–134 (In Russ.).

19. Bushuev D.A., Kiseleva T. Y., Rubanov V.G. Virtual prototype for co-simulation of hub-motor dynamics with brushless DC motor and elements of fault-tolerant control. IOP Conf. Series: Materials Science and Engineering (Proceedings of International Conference on Mechanical Engineering, Automation and Control Systems MEACS 2018), 2019, 7 p.

20. Porkhalo V. A., Bazhanov A. G., Magergut V. Z. Informatsionnye predstavleniya adaptivnogo trekhpozitsionnogo algoritma dlya ego apparatnykh i programmnykh realizatsii [Information representations of an adaptive three-position algorithm for its hardware and software implementations]. Nauchnye vedomosti BGU = Scientific statements of Belgorod State University, 2011, no1(96), is.17/1, pp. 161–168 (In Russ.).


Review

For citations:


Porkhalo V.A., Rubanov V.G., Bazhanov A.G., Lutcenko О.V. Computer-Aided Design of the Robotic Platform Control System Using Adams and Matlab. Proceedings of the Southwest State University. 2020;24(4):217-229. (In Russ.) https://doi.org/10.21869/2223-1560-2020-24-4-217-229

Views: 777


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)