Small-size Unmanned Control Algorithm of an Underwater Complex
https://doi.org/10.21869/2223-1560-2020-24-4-166-179
Abstract
Purpose of research: The creation of water bodies monitoring systems makes it possible to evaluate environmental situation in various points of monitoring area quickly. One of the main stages of water quality research is sampling, which is currently carried out at stationary posts, which makes it impossible to ensure operational control in various areas of an observation site. The problem can be solved by using mobile robotic platforms. The purpose of this study is to create mathematical model and algorithm for controlling autonomous movement of an underwater robotic device for collecting water samples in a reservoir.
Methods. The following problems were solved for this purpose: the structure of the device was developed, which consists of a power frame unit, units of screw electric drives, units of depth and direction rudders. On-board power supply unit, sensor unit providing interaction of underwater vehicle with environment were also developed. Control tasks are formulated. A scheme of device movement in a reservoir has been developed for this purpose.
Results. Modular method of trajectory planning is proposed. It is based on a single motion cycle concept, which consists of 2 turns and 2 straight-line stages of 2R2P. A model of control algorithm is also proposed and reactions of apparatus to external disturbances are studied. General dynamics theorems, method of algorithm synthesizing according to inverse dynamics problem were applied when solving problems.
Conclusion: As a result of conducted studies, the system response to disturbances acting in longitudinal direction is described, disturbance diagrams are also described, random type with normal distribution law and mass center deviation s from the given position are given.
Keywords
About the Authors
V. E. BondyrevRussian Federation
Vladimir E. Bondyrev, Dr. of Sci. (Pedagogical), Leading Researcher of the Research Institute of RES
50 Let Oktyabrya str. 94, Kursk 305040
S. I. Knyazev
Russian Federation
Sergey I. Knyazev, Post-Graduate Student, Department of Mechanics, Mechatronics and Robotics
50 Let Oktyabrya str. 94, Kursk 305040
V. I. Korolev
Russian Federation
Vladimir I. Korolev, Post-Graduate Student, Department of Mechanics, Vice-President of the United Shipbuilding Company for Military Shipbuilding Mechatronics and Robotics
50 Let Oktyabrya str. 94, Kursk 305040
S. F. Jatsun
Russian Federation
Sergei F. Yatsun, Dr. of Sci. (Engineering), Professor, Head of the Department of Mechanics, Mechatronics and Robotics
50 Let Oktyabrya str. 94, Kursk 305040
References
1. Inzartsev A.V., Pavin A.M., Bagnitsky A.V. Planirovanie i osushchestvlenie deistvii obsledovatel'skogo podvodnogo robota na baze povedencheskikh metodov [Planning and implementation of actions of a survey underwater robot based on behavioral methods]. Podvodnye issledovaniya i robototekhnika = Underwater Research and Robotics, 2013, no. 1 (15), pp. 4-16 (In Russ.).
2. Melman S., Bobkov V., Inzartsev A., Pavin A. Distributed Simulation Framework for Investigation of Autonomous Underwater Vehicles’ RealTime Behavior. Proceedings of the OCEANS’15 MTS/IEEE Conference. Washington DC, USA, 2015.
3. Pavin A., Inzartsev A., Eliseenko G. Reconfigurable Distributed Software Platform for a Group of UUVs (Yet Another Robot Platform). Proceedings of the OCEANS’16 MTS/IEEE Conference. Monterey, USA, 2016.
4. Kostenko V. V., Pavin A.M. Avtomaticheskoe pozitsionirovanie neobitaemogo podvodnogo apparata nad ob"ektami morskogo dna s ispol'zovaniem fotoizobrazhenii [Automatic positioning of an uninhabited underwater vehicle over objects of the sea floor using photo images]. Podvodnye issledovaniya i robototekhnika = Underwater Research and Robotics, 2014, no. 1(17), pp. 39-47 (In Russ.).
5. Pavin A., Inzartsev A., Eliseenko G., Lebedko O., Panin M. A Reconfigurable Webbased Simulation Environment for AUV. Proceedings of the OCEANS’15 MTS/IEEE Conference. Washington DC, USA, 2015.
6. Inzartsev A.V., Pavin A.M., Eliseenko G. D, Rodkin D. N., Sidorenko A.V., Lebedko O. A., Panin M. A. Rekonfiguriruemaya krossplatformennaya sreda modelirovaniya povedeniya neobitaemogo podvodnogo apparata [Reconfigurable cross-platform environment for modeling the behavior of an uninhabited underwater vehicle]. Podvodnye issledovaniya i ro-bototekhnika = Underwater Research and Robotics, 2015, no. 2 (20), pp. 28-34 (In Russ.).
7. Pavin A. Underwater Object Recognition in Photo Images. Proceedings of the OCEANS’15 MTS/IEEE Conference. Washington DC, USA, 2015.
8. Inzartsev A.V., Pavin A.M., Lebedko O. A., Panin M. A. Raspoznavanie i obsledovanie malorazmernykh podvodnykh ob"ektov s pomoshch'yu avtonomnykh neobitaemykh podvodnykh apparatov [Recognition and survey of small-sized underwater objects using Autonomous uninhabited underwater vehicles]. Podvodnye issledovaniya i robototekhnika = Underwater Research and Robotics, 2016, no. 2 (22), pp. 36–43 (In Russ.).
9. Knyazev S. I., Maslov A. A., Yatsun S. F. [Mathematical model of a small-sized unmanned underwater complex for environmental monitoring of reservoirs]. XXXI Mezhdunarodnaya innovatsionnaya konferentsiya molodykh uchenykh i studentov po problemam mashinovedeniya (MIKMUS-2019) [XXXI international innovative conference of young scientists and students on machine science (MICMUS-2019)]. Moscow, 2020, pp. 480-483 (In Russ.).
10. Knyazev S. I., Yatsun A. S., Yatsun S. F. [Controlled movement of a small-sized underwater robotic complex (MBPC)]. Baltiiskii morskoi forum. Materialy VII Mezhdunarodnogo Baltiiskogo morskogo foruma [Collection "Baltic sea forum". Materials of the VII international Baltic sea forum]. Kaliningrad, 2019, pp. 40-45 (In Russ.).
11. Knyazev S. I., Yatsun A. S., Yatsun S. F. [Controlled movement of a small-sized underwater robotic complex (MBPC)]. Baltiiskii morskoi forum. Materialy VII Mezhdunarodnogo Baltiiskogo morskogo foruma [Collection "Baltic sea forum". Materials of the VII international Baltic sea forum]. Kaliningrad, 2019, pp. 40-45 (In Russ.).
12. Efimov S. V., Knyazev S. I., Yatsun S. F. Izuchenie upravlyaemogo dvizheniya malogabaritnogo podvodnogo kompleksa - analizatora zagryaznenii akvatorii [Study of controlled movement of a small-sized underwater complex-water pollution analyzer]. Cloud of Science, 2020, vol. 7, no. 3, pp. 488-497 (In Russ.).
13. Basharin A.V., Novikov V. A., Sokolovsky G. G. Upravlenie elektroprivodami [Management of electric drives]. Leningrad, Energoizdat Publ., 1982. 392 p. (In Russ.)
14. Lurie B. Ya., Enright P. J. Klassicheskie metody avtomaticheskogo upravleniya [Classical methods of automatic control]. Saint Petersburg, BHV-Petersburg Publ., 2004. 640 p. (In Russ.).
15. Schweppe F. Uncertain dynamic systems. Englewood Cliffs; N. J.: Prentice Hall, 1973. 563 p.
16. Kurzhansky A. B. Upravlenie i nablyudenie v usloviyakh neopredelennosti [Management and observation in conditions of uncertainty]. Moscow, FIZMATLIT Publ., 1977. 392 p. (In Russ.).
17. Chernousko F. L. Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem [Estimation of the phase state of dynamical systems]. Moscow, Nauka Publ., 1988. 321 p. (In Russ.).
18. Solodovnikov V. V. Avtomaticheskoe upravlenie i vychislitel'naya tekhnika [Automatic control and computer technology]. Moscow, Mir Publ., 1999. 495 p. (In Russ.).
19. Levin V. I. Strukturno-logicheskie metody issledovaniya slozhnykh sistem s primeneniem EVM [Structural and logical methods of studying complex systems using computers[. Moscow, Nauka Publ., 1987. 304 p. (In Russ.).
20. Levin V. I. Optimal'noe proektirovanie v usloviyakh neopredelennosti. Metod determinizatsii [Optimal design under uncertainty. The method of determinization]. Ontologiya proektirovaniya = Design Ontology, 2013, no. 3 (9), pp. 41-52 (In Russ.).
Review
For citations:
Bondyrev V.E., Knyazev S.I., Korolev V.I., Jatsun S.F. Small-size Unmanned Control Algorithm of an Underwater Complex. Proceedings of the Southwest State University. 2020;24(4):166-179. (In Russ.) https://doi.org/10.21869/2223-1560-2020-24-4-166-179