Preview

Proceedings of the Southwest State University

Advanced search

Aerodynamics and Heat Transfer of Swirling Natural Gas Flow in a Vortex Heat Exchanger of the Heating System of a Gas Control Point

https://doi.org/10.21869/2223-1560-2020-24-3-99-110

Abstract

Purpose of research. To obtain a two-parameter model characterizing the aerodynamic and heat exchange processes occurring in a vortex heat exchanger, giving a better agreement between the calculated and experimental values of the heat transfer coefficient taking into account the curvature of the swirling gas flow in a vortex heat exchanger, in which a controlled gas pressure drop is used as a source of thermal energy. This technical solution will make it possible to abandon the installation of autonomous sources of thermal energy, which will reduce the cost of gas as a fuel in the heating system of the industrial premises of the gas distribution point (GDP), as well as provide more comfortable working conditions for the hydraulic fracturing pressure regulator.
Methods. Comprehensive analysis of thermal and hydraulic characteristics in a vortex heat exchanger is based on well-known theoretical positions and equations of motion of a swirling gas flow and heat exchange laws.
Results. It is obtained a dependence that characterizes the intensification of heat transfer based on the influence of the axial and rotational speed, as well as the path of motion of the swirling gas flow. This dependence is obtained on the basis of a comprehensive analysis of the aerodynamic and heat exchange characteristics of a vortex heat exchanger, in which a controlled gas pressure drop is used as a source of thermal energy.
Conclusion. The obtained two-parameter model gives the best agreement of the calculated values of the heat transfer coefficient with the values obtained experimentally, which were used in the thermal engineering calculation of the design parameters of the vortex heat exchanger.

About the Authors

N. P. Grigorova
Southwest State University
Russian Federation

Natalia P. Grigorova, Post-Graduate Student of Heat and Gas Supply Department

50 Let Oktyabrya str. 94, Kursk 305040



P. V. Monastyrev
Tambov State Technical University
Russian Federation

Pavel V. Monastyrev, Dr. of Sci. (Engineering)Rector of the Institute of Architecture, Construction and Transport

106 Sovetskaya str., Tambov 392000



E. G. Pakhomova
Southwest State University
Russian Federation

Ekaterina G. Pakhomova, Cand. of Sci. (Engineering), Associate Professor, Dean of Construction and Architecture Faculty

50 Let Oktyabrya str. 94, Kursk 305040



N. E. Semicheva
Southwest State University
Russian Federation

Natalia E. Semicheva, Cand. of Sci. (Engineering), Associate Professor, Head of Heat and Gas Supply Department

50 Let Oktyabrya str. 94, Kursk 305040



References

1. Dubrakova K. O., Monastyrev P. V., Klychnikov R. Y., Yezerskiy V. A. Optimization of thermal modernization of a group of buildings using simulation modeling. Journal of Applied Engineering Science, 2019, vol. 17, is. 2, pp. 192-197.

2. Mishchenko E., Monastyrev P., Evdokimtsev O. Quality Improvement of Specialists Training for Energy-Efficient Construction. 2018 IOP Conf. Ser.: Mater. Sci. Eng. 463 032046. https://doi.org/10.1088/1757-899X/463/3/032046

3. Erofeev A.V., Yartsev V. P., Monastyrev P. V. Dekorativno-zashchitnye plity dlya fasadnoi otdelki zdanii [Decorative and protective plates for facade finishing of buildings. News of higher educational institutions]. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil'noi promyshlennosti = Technology of the Textile Industry, 2017, no. 1 (367), pp. 101-104 (In Russ.).

4. Gusev B. V., Yezersky V. A., Monastyrev P. V. Teploprovodnost' mineralovatnykh plit v usloviyakh ekspluatatsionnykh vozdeistvii [Thermal conductivity of mineral wool slabs under operating conditions]. Promyshlennoe i grazhdanskoe stroitel'stvo = Industrial and Civil Construction, 2005, no. 1, pp. 48-49 (In Russ.).

5. Gusev B. V., Yezersky V. A., Monastyrev P. V. Izmenenie lineinykh razmerov mineralovatnykh plit v usloviyakh ekspluatatsionnykh vozdeistvii [Changing the linear dimensions of mineral wool slabs under operating conditions]. Promyshlennoe i grazhdanskoe stroitel'stvo = Industrial and Civil Construction, 2004, no. 8, pp. 32-34 (In Russ.).

6. Kobelev N. S., Grigorova N. P. [et al.]. Vikhrevoi teploobmennyi element [Vortex heat exchange element]. Patent RF, no. 2615878, 2017 (In Russ.).

7. Kobelev N. S., Grigorova N. P. [et al.]. Vikhrevoi teploobmennyi element [Vortex heat exchange element]. Patent RF, no. 2622340, 2017 (In Russ.).

8. Grigorova N. P., Monastyrev P. V., Pakhomova E. G., Semicheva N. E. Teplotekhnicheskii raschet konstruktivnykh parametrov vikhrevogo teploobmen-nogo apparata sistemy otopleniya gazoregulyatornogo punkta [Heat engineering calculation of design parameters of the vortex heat exchanger of the gas control point heating system]. Zhurnal BST. Tekhnologiya i organizatsiya stroitel'stva. Nauka 2.1. = Technology and Organization of Construction. Nauka 2.1, 2020, no. 8, pp. 45-49 (In Russ.).

9. Grigorova N. P., Monastyrev P. V. [Experimental study of the influence of fine droplet moisture and contamination in the coolant on the heat Transfer Coefficient of the vortex heat exchanger of the gas control point heating system]. Sovremennye kontseptsii tekhniki i tekhnologii: problemy, sostoyanie i perspektivy [Modern concepts of engineering and technology: problems, state and prospects]. Tchboksary, 2020, pp. 1-5 (In Russ.). Available at: https://interactive-plus.ru/ru/article

10. Goldshtik M. A. Vikhrevye potoki [Vortex flows]. Novosibirsk, Nauka Publ., 1981. 336 p. (In Russ.).

11. Polyakov A. A., Kanava V. A. Teploobmennye apparaty v inzhenernom oborudovanii zdanii i sooruzhenii [Heat exchangers in engineering equipment of buildings and structures]. Moscow, Stroyizdat Publ., 1989. 200 p. (In Russ.).

12. Dreytser G. A. Osnovy konvektsionnogo teploobmena v kanalakh [Fundamentals of convection heat transfer in channels]. Moscow, 1989. 84 p. (In Russ.).

13. Ametistov E. V., Grigoriev V. A., Zorina V. M. Teplo- i massoobmen. Teplotekhnicheskoi eksperiment [Heat and mass transfer. Heat engineering experiment]. Moscow, Energoizdat Publ., 1982. 512 p. (In Russ.).

14. Stam A. M. Aerodinamika tsiklonno-vikhrevykh kamer [Aerodynamics of cyclonevortex chambers]. Vladivostok, 1985. 197 p. (In Russ.).

15. Gordov A. N., Zhegullo O. M., Ivanov A. G. Osnovy temperaturnykh izmenenii [Fundamentals of temperature changes]. Moscow, Energoatoizdat Publ., 1992. 304 p. (In Russ.).

16. Nikitin Yu. M., Pokrovsky Yu. Y., Paukov E. I. Intensifikatsiya konvektivnogo teploobmena s pomoshch'yu odno i chetyrekhzakhodnoi iskusstvennoi sherokhovatosti [Intensification of convective heat transfer using one-and four-pass artificial roughness]. Promyshlennaya teplotekhnika = Industrial Heat Engineering, 1984, no. 6. 35, pp. 26-28 (In Russ.).

17. Voronin G. M., Dubrovsky E. V. Effektivnye teploobmenniki [Effective heat exchangers]. Moscow, Mashinostroenie Publ., 1973. 96 p. (In Russ.).

18. Wong C. Osnovnye formuly i dannye po teploobmenu dlya inzhenerov [Basic formulas and data on heat transfer for engineers]. Moscow, Atomizdat Publ., 1979. 216 p. (In Russ.).

19. Lenivech F. Izmerenie temperatur v tekhnike [Measuring temperatures in engineering]. Moscow, Metallurgy Publ., 1980. 118 p. (In Russ.).

20.


Review

For citations:


Grigorova N.P., Monastyrev P.V., Pakhomova E.G., Semicheva N.E. Aerodynamics and Heat Transfer of Swirling Natural Gas Flow in a Vortex Heat Exchanger of the Heating System of a Gas Control Point. Proceedings of the Southwest State University. 2020;24(3):99-110. (In Russ.) https://doi.org/10.21869/2223-1560-2020-24-3-99-110

Views: 433


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)