Preview

Proceedings of the Southwest State University

Advanced search

Determination of the Boundaries of the Compressible Strata When Conducting Engineering Surveys

https://doi.org/10.21869/2223-1560-2020-24-3-79-87

Abstract

Purpose of research. Errors and inaccuracies in the preparation of deliverables based on the results of engineering surveys which are an integral and important part of the design and estimate documentation, can lead to irreversible consequences and significantly reduce the life of buildings and structures. The main difficulty in investigating soil physical and mechanical properties at a construction site is to determine the depth of excavation. This is due to the fact that an increase in the calculated depth leads to the increase in the cost of work, and its decrease leads to the risk of inaccuracies and errors in the design of foundations of buildings and structures. In accordance with the current regulatory documents, the excavation depth during soil investigation should be 1-2 meters below the boundary of the compressible strata. The condition on the basis of which the specified boundary is determined is provided. The development of a technique that allows determining the depth of the compressible strata at the stage of engineering surveying with adequate accuracy is an important task from a practical standpoint.
Methods. Determining natural stress Ϭzg,0 as the product of foundation depth d and the specific gravity of the soil above the base ɣ′ІІ,  , taking into account the fact that the average pressure tends to the value of the estimated resistance of the soil, it is shown that physical-mechanical structure of the base soil exerts the main influence on the parameters of the compressible strata, and correspondingly, to the excavation depth value. In this case, the stresses transferred by the foundation of a building or structure have an indirect effect.
Results. The maximum values of the depth of excavation for engineering and geological surveying for tight coarse sand, medium density and fineness sand, and fine sand and sandy loam are determined.
Conclusion. It is concluded that the given technique allows determining the depth of excavation during engineering and geological surveying with an adequate accuracy.

About the Authors

K. O. Dubrakova
Southwest State University
Russian Federation

Kseniya O. Dubrakova, Cand. of Sci. (Engineering), Associate Professor, Department of Industrial and Civil Engineering

50 Let Oktyabrya str. 94, Kursk 305040



V. A. Solodilova
Southwest State University
Russian Federation

Victoria A. Solodilova, Student

50 Let Oktyabrya str. 94, Kursk 305040



References

1. Nguyen M.D. [et al.]. Behavior of nonwoven-geotextile-reinforced sand and mobilization of reinforcement strain under triaxial compression. Geosynthetics, 2013, no. 20 (3), pp. 207–225.

2. Phoon K.-K., Retief J.V. Reliability of geotechnical structures in ISO2394. Matieland, South Africa, 2016, 249 p.

3. Baranovsky A.G. [Changes in the physico-mechanical properties of eluvial clay soils under the influence of technogenic factors]. Analiz, prognoz i upravlenie prirodnymi riskami v sovremennom mire. Sbornik [Collection. Analysis, forecast and management of natural risks in the modern world]. Moscow, 2015, pp. 92-97 (In Russ.).

4. Boldyrev G.G. Metody opredeleniya mekhanicheskikh svoistv gruntov. Sostoyanie voprosa [Methods for determining the mechanical properties of soils.State of the issue monograph]. Penza, PGUAS Publ., 2014. 696 p. (In Russ.).

5. Demintseva EA, Weinstein V.M. Analiz izmeneniya fiziko-mekhanicheskikh svoistv gruntov pri stabilizatsii ikh modifikatorom «Penetron» [Analysis of changes in the physical and mechanical properties of soils during stabilization by the Penetron modifier]. Modernizatsiya i nauchnye issledovaniya v transportnom komplekse = Modernization and Scientific Research in the Transport Complex, 2013, vol. 3, pp. 157-162 (In Russ.).

6. Kalugin P.I., Pyatigor D.A. Osobennosti raboty gruntov osnovanii fundamen-tov posle rekonstruktsii zdanii [Features of the work of soils of foundations after reconstruction of buildings]. Nauchnyi vestnik Voronezhskogo gosudarstvennogo arkhitekturnostroitel'nogo universiteta = Scientific Bulletin of the Voronezh State University of Architecture and Civil Engineering, 2017, no. 1, pp.60-64 (In Russ.).

7. Kolchunov V.I., Potapov V.V., Dmitrieva K.O., Ilyin V.A. Raschetnyi analiz dlitel'nogo deformirovaniya sistemy «zdanie-osnovanie zdaniya» khranilishcha yadernykh otkhodov AES [Calculation analysis of long-term deformation of the building-to-building system of a nuclear waste storage facility]. Stroitel'stvo i rekonstruktsiya = Construction and Reconstruction, 2017, no. 4(72), pp. 27-33 (In Russ.).

8. Krasnov A.A., Chetverikov A.L., Sheina S.G., Shumeev V.G. [Assessing the impact of a multi-storey building being built on the technical condition of nearby buildings. Problems of construction, engineering support and the city ecology]. Problemy stroitel'stva, inzhenernogo obespecheniya i ekologii goroda. Sbornik materialov III Vserossiiskoi nauchnoi konferentsii [Problems of construction, engineering and ecology of the city. Collection of materials of the III All-Russian Scientific Conference]. Penza, 2001, pp. 3-5 (In Russ.).

9. Akbulyakov M.A., Ponomarev A.B., Sychkina E.N., Cherepanov A.Yu. Sopostavlenie rezul'tatov eksperimental'nykh issledovanii mekhanicheskikh svoistv argillitov pri vybore parametrov, ispol'zuemykh v proektirovanii zdanii i sooruzhenii [Comparison of the results of experimental studies of the mechanical properties of mudstones when choosing parameters used in the design of buildings and structures]. Vestnik PNIPU. Urbanistika = Bulletin of PNIPU. Urban Studies, 2013, no.1 (In Russ.).

10. Mirsayapov I.T., Koroleva I.V. Issledovaniya mekhanicheskikh svoistv glini-stykh gruntov v usloviyakh prostranstvennogo napryazhennogo sostoyaniya [Studies of the mechanical properties of clay soils under spatial stress conditions]. Izvestiya KGASU = Izvestiya KGASU, 2010, no. 1 (13), pp. 170-175 (In Russ.).

11. Nikiforov V.V., Seliverstov M.M., Bereznev V.A. [Engineering solutions for the reconstruction of the foundation in the conditions of anomalies in the physical and mechanical properties of the soil]. Molodezhnaya nauka: tekhnologii, innovatsii [Youth Science: Technologies, Innovations]. Perm, 2014, pp. 282-286 (In Russ.).

12. Polishchuk A.I. Podkhod k otsenke zagruzheniya osnovanii fundamentov rekonstruiruemykh i vosstanavlivaemykh zdanii [An approach to assessing the load on the foundations of the foundations of reconstructed and restored buildings]. Vestnik TGASU = Bulletin of TGASU, 2000, no. 1, pp.313-326 (In Russ.).

13. Ponomarev A.B. K voprosu ob izmenenii fiziko-mekhanicheskikh kharakteristik gruntov v protsesse stroitel'stva i ekspluatatsii zdanii [On the issue of changing the physical and mechanical characteristics of soils during the construction and operation of buildings]. Stroitel'stvo i transport = Construction and Transport, 2013, no. 2 (14), pp.104-109 (In Russ.).

14. Prostov S.M., Smirnov N.A., Bakhaeva S.P. Prognoz fiziko-mekhanicheskikh svoistv namyvnogo massiva po dannym elektricheskikh zondirovanii [Forecast of the physicomechanical properties of the alluvial massif according to electrical sounding data]. Fiziko tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Physicotechnical Problems of Mining, 2015, no.1, pp.69-78 (In Russ.).

15. Smorchkov A.A., Kereb S.A., Orlov D.A., Baranovskaya K.O. Izmenenie raschetnogo soprotivleniya gruntov osnovaniya, rabotayushchego kak nelineinaya neuprugaya sistema [Change in the design resistance of the soil of the base, working as a nonlinear inelastic system]. Promyshlennoe i grazhdanskoe stroitel'stvo = Industrial and Civil Engineering, 2014, no. 2, pp. 54 -56 (In Russ.).

16. Smorchkov A.A., Kereb S.A., Orlov D.A., Baranovskaya K.O. Raschet deformatsii osnovaniya s ispol'zovaniem nelineinoi neuprugoi sistemy [Calculation of base deformations using a nonlinear inelastic system]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2012, no. 2, pt.3, pp.182-185 (In Russ.).

17. Smorchkov A.A., Kereb S.A., Orlov D.A., Baranovskaya K.O. Izmenenie raschetnogo soprotivleniya gruntov osnovaniya, rabotayushchego kak nelineinaya neuprugaya sistema [Change in the calculated resistance of the ground base operating as a nonlinear inelastic system]. Promyshlennoe i grazhdanskoe stroitel'stvo = Industrial and Civil Construction, 2014, no.2, pp.54-56 (In Russ.).

18. Torov V.V., Tsymbelman N.Ya. Izmenenie fiziko-mekhanicheskikh svoistv grun-tov pri seismicheskom vozdeistvie Change of physical and mechanical properties of soils under seismic impact]. Vologdinskie chteniya = Vologda Readings, 2014, no. 70, pp. 7-8 (In Russ.).

19. Ulitsky V.M., Shashkin A.G., Shashkin K.G., Vasenin V.A. Otsenka vzaimnogo vliyaniya zdanii i podzemnykh sooruzhenii [Assessment of the mutual influence of buildings and underground structures]. Georekonstruktsiya = Georeconstruction, 2012, no. 231 (In Russ.).


Review

For citations:


Dubrakova K.O., Solodilova V.A. Determination of the Boundaries of the Compressible Strata When Conducting Engineering Surveys. Proceedings of the Southwest State University. 2020;24(3):79-87. (In Russ.) https://doi.org/10.21869/2223-1560-2020-24-3-79-87

Views: 966


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)