Algorithms for Functioning of the Magneto-Metric System to Provide Search and Rescue Operations Using Unmanned Flying Vehicles
https://doi.org/10.21869/2223-1560-2019-23-6-210-224
Abstract
Purpose of research. Reducing the time and increasing the efficiency of search and rescue of crews of land vehicles, air, surface and underwater craft. Combining physical, informational, and geometric parameters allows reliable detection of single ferromagnetic bodies by analyzing additional information in working algorithms.
Methods. The paper contains a practically significant variant of building a search engine that is implemented on two or more unmanned flying vehicles moving in the search area in a coordinated formation at the basic distance. The solution system is based on using magnetic field components as magnetometric information without using primary gradient information. This feature allows us to get compact and functionally complete algorithms. Calculations using such algorithms ensure the stability of an unmanned flying vehicle in various combinations of vector, roll and pitch.
Results. Algorithms for the functioning of the magnetometric system for searching ferromagnetic bodies based on the magnetostatic equations have been constructed in the article,. The intelligent system is based on the scheme of a measuring and computing circuit with staggered vector three-axis blocks of magnetometers in space. The system is able to solve the whole range of problems of search, detection, direction finding, localization, positioning and identification of metal objects that have their own magnetic field.
Conclusion. The main result of the study is that the working algorithms for detecting ferromagnetic bodies take into account the characteristics of the air environment, the instrumental error of measurement units of physical quantities and the geometric proportions of measuring equipment location on board the unmanned and manned search and rescue helicopters. The obtained research results have been used in the development of a hardware and software complex with helicopter-type unmanned flying vehicles designed to support search and rescue operations in the Arctic.
About the Authors
D. E. GutsevichRussian Federation
Denis E. Gutsevich, Post-Graduate Student, Junior Researcher, Laboratory of Systems and Engineering Automation Laboratory
Saratov
G. M. Proskuryakov
Russian Federation
German M. Proskuryakov, Cand. of Sci. (Engineering), Researcher, Laboratory of Systems and Engineering Automation Laboratory
Saratov
V. N. Slonov
Russian Federation
Vladimir N. Slonov, Cand. of Sci. (Engineering), Researcher, Laboratory of Systems and Engineering Automation Laboratory
Saratov
D. P. Teterin
Russian Federation
Dmitry P. Teterin, Dr. of Sci. (Engineering), First Deputy General Director
Kursk
E. A. Titenko
Russian Federation
Evgeny A. Titenko, Cand. of Sci. (Engineering), Associate Professor, IT Departament
Kursk
S. N. Frolov
Russian Federation
Sergey N. Frolov, Cand. of Sci. (Engineering), Senior Researcher of the Research Institute of Radio Electronic Systems
Kursk
l. A. Lisitzin
Russian Federation
Leonid A. Lisitzin, Cand. of Sci. (Engineering), Associate Professor, IT Departament
Kursk
References
1. Atakishchev O.I., Titenko E.A., Skornyakov K.S., Zaichko V.A., Rios A.P. Model' i metody upravleniya slozhnymi tekhnicheskim ob"ektami na osnove produktsionnoi paradigmy vychislenii [A Model and control methods for a complex technical objects based on the production computing]. Izvestiya Yuzhnogo federal'nogo universiteta. Tekhnicheskie nauki = News of the South Federal University. Technical Science, 2012, no.3, pp. 181-187 (In Russ.).
2. Bogoeva E. M., Garkushev A. Yu. Osnovy postroeniya modelei intellektualizatsii v sistemakh bezopasnosti [The basis of a building models of the intellectualization in security systems.]. Voprosy oboronnoi tekhniki. Seriya 16: Tekhnicheskie sredstva protivodeistviya terrorizmu = Issues of Defense Technology. Series 16: Counter Terrorism Techniques, 2014, no. 9-10, pp. 22-27 (In Russ.).
3. Anisimov V.G., Vedernikov Yu.V. Nauchno-metodicheskoe soprovozhdenie integratsii vysokotekhnologichnykh innovatsii v protsessy razrabotki vysokotochnogo oruzhiya [A scientific and methodological support for the integration of high-tech innovations in the development of a high-precision weapons.]. Voprosy oboronnoi tekhniki. Seriya 16: Tekhnicheskie sredstva protivodeistviya terrorizmu = Issues of Defense Technology. Series 16: Counter Terrorism Techniques, 2014, no. 3-4, pp. 66-75 (In Russ.).
4. Anisimov V. G., Garkushev A. Yu., Sazykin A. M. Optimizatsiya vnedreniya novykh tekhnologii v perspektivnye obraztsy artilleriiskogo vooruzheniya [An optimization of the new technologies in promising models of artillery weapons]. Izvestiya Rossiiskoi akademii raketnykh i artilleriiskikh nauk = News of the Russian Academy of Missile and Artillery Sciences, 2012, no. 4, pp. 39-44 (In Russ.).
5. Bazhin D. A., Garkushev A. Yu. Model' otsenki effektivnosti informatsionnogo obespecheniya primeneniya vysokotochnogo oruzhiya v kontrterroristicheskikh operatsiyakh [A Model for evaluating of the efficiency of information complex for the use of precision weapons in counter-terrorist operations.]. Voprosy oboronnoi tekhniki. Seriya 16: Tekhnicheskie sredstva protivodeistviya terrorizmu = Issues of Defense Technology. Series 16: Counter Terrorism Techniques, 2015, no. 1-2, pp. 44-53 (In Russ.).
6. Kryukov I. N. Magnitometricheskie sredstva obnaruzheniya: teoriya i praktika postroeniya [Magnetometric means of a detection: theory and practice of a construction]. Moscow, Radiotekhnika Publ., 2013, 192 p. (In Russ.).
7. Bondarev A.S., Chelkak S.I. Opredelenie istochnika dipol'nogo tipa po izmereniyam napryazhennosti magnitnogo polya [Determination of a dipole type source from a measurements of magnetic field strength]. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie. = News of the Higher Education. Instrumentation, 1990, vol. 33, no. 2, pp. 33–38 (In Russ.).
8. Ginzburg B., Sheinker A., Frumkis L. Investigation of advanced data processing technique in magnetic anomaly detection systems. Ist International conference of Sinsing Technology, November 21–23 Palmerston North, New Zealand, 2005, pp. 561– 566.
9. Semevsky R. B., Averkiev V. V., Yarotsky V. A. Spetsial'naya magnitometriya [Special magnetometry]. Saint-Petersburg, Nauka Publ., 2002, 228 p. (In Russ.).
10. Kovadlin M. Sh., Sergushov I.V. Pilotazhnye kompleksy i navigatsionnye sistemy vertoletov [Flight complexes and navigation systems of helicopters]. Moscow, Innovatsionnoe mashinostroenie Publ., 2017, 368 p. (In Russ.).
11. Bystrov L. G., Drogaytsev V. S. Metody identifikatsii dinamicheskikh kharakteristik statsionarnykh elementov bortovykh sistem upravleniya [Methods for the identification of dynamic characteristics of stationary elements of the onboard control systems]. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta = Vestnik of the Saratov State Technical University, 2009, vol.4, no.1, pp. 63–71 (In Russ.).
12. Drogaytsev V.S., Pisarev V.N. Tekhnologiya protsessa kompleksirovaniya avtomatizirovannykh sredstv ispytaniya bortovykh sistem letatel'nykh apparatov [Technology of the integrating of the automated testing means for a onboard aircraft systems]. Informatsionnye tekhnologii v proektirovanii i proizvodstve = Information Technologies in Design and Industry, 2004, no. 3, pp. 53–76 (In Russ.).
13. Batraeva I.A., Teterin D.P. Algoritm planirovaniya traektorii dvizheniya bespilotnogo letatel'nogo apparata pri vypolnenii poiskovo-spasatel'nykh operatsii [An algorithm for planning of a trajectory of an unmanned aircraft vehicle for search and rescue operations]. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk = News of the Samara Scientific Center of the Russian Academy of Sciences, 2018, vol. 20, no. 6, pp. 210214 (In Russ.).
14. Atakishchev O. I., Batraeva I. A. Matrichnyi metod planirovaniya traektorii dvizheniya bespilotnogo letatel'nogo apparata peremennoi massy [The matrix method of the trajectory planning for an unmanned aerial vehicle with a variable weight]. Izvestiya Instituta inzhenernoi fiziki = News of the Institute of Engineering Physics, 2018, no. 4, pp. 93–98 (In Russ.).
15. Lotorev P.V., Kurochkin A.G., Grivachev A.V., Emelyanov S.G. Organizatsiya sistemy podderzhki prinyatiya reshenii dlya upravleniya gruppoi robotov [A decision support system for the control of a robot group]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel’naya tekhnika, informatika. Meditsinskoe priborostroenie = Proceedings of the Southwest State University. Series: Control, Computing engineering, Information science. Medical instruments engineering, 2015, no. 3, pp. 30-36.
16. Teterin D.P. Sintez trebovanii k bortovomu informatsionno-izmeritel'nomu i modeliruyushchemu kompleksu [Synthesis of requirements for an on-board informationmeasuring and modeling complex]. Informatsionno-upravlyayushchie sistemy = Information-control Systems, 2009, no. 1, pp. 10-14 (In Russ.).
Review
For citations:
Gutsevich D.E., Proskuryakov G.M., Slonov V.N., Teterin D.P., Titenko E.A., Frolov S.N., Lisitzin l.A. Algorithms for Functioning of the Magneto-Metric System to Provide Search and Rescue Operations Using Unmanned Flying Vehicles. Proceedings of the Southwest State University. 2019;23(6):210-224. (In Russ.) https://doi.org/10.21869/2223-1560-2019-23-6-210-224