Preview

Proceedings of the Southwest State University

Advanced search

Simulation of Controlled Motion of a Person When Walking in an Exoskeleton

https://doi.org/10.21869/2223-1560-2019-23-6-133-147

Abstract

Purpose of reseach. Robot exoskeletons open up new possibilities in the rehabilitation of patients with lower limb injuries. Despite the growing number of publications on this topic, many issues related to the development of design tools based on the simulation of human movement in an exoskeleton using the theoretical basis of stable movement in the upright position have not been studied well enough. Therefore, the purpose of this paper is to develop methods for improving the efficiency of the lower extremity exoskeleton control system for biped gait. 

Methods. The key feature of the paper is the application of modeling techniques determining the laws of the exoskeleton motion. Methods of mathematical modeling of the motion of sections are used, taking into account their subsequent possible use in modeling the motion of exoskeleton sections; trajectory equations are composed using the vector-matrix method. The trajectories of the exoskeleton's foot, lower leg, and hip movement during steady walking are studied.

Results. To simulate the operation of a robotic complex - a prototype of an exoskeleton of the lower extremities with ten active degrees of freedom, kinematic definition the trajectory of the sections is used. To find the vector of generalized coordinates, the inverse kinematics problem is solved applying the vector-matrix method using the Jacobian matrix. The results of numerical simulation show high convergence and eficacy of the proposed method. The proposed method allows defining the trajectory of the operator in the exoskeleton in real devices.

Conclusion. In the paper, the study of walking is performed from the standpoint of modeling a quasi-static gait using kinematic approaches. The developed method for determining the defining angles of rotation of the exoskeleton sections for different foot positions taking into account the position of the mass center projections, is used in the development of algorithms for controlling human motion in the exoskeleton. 

About the Authors

S. F. Yatsun
Southwest State University
Russian Federation
Sergei F. Yatsun, Dr. of Sci. (Engineering),  Professor, Head of the Department of Mechanics, Mechatronics and Robotics


O. G. Loktionova
Southwest State University
Russian Federation

Oksana G. Loktionova, Dr. of Sci. (Engineering), Professor, Vice-rector

Kursk



Khalil Hamed Mohammed Hamood Al Manji
Southwest State University
Russian Federation

Al Manji Khalil Hamed Mohammed Hamood, Post-Graduate Student

Kursk



A. S. Yatsun
Southwest State University
Russian Federation

Andrey S. Yatsun, Cand. of Sci. (Engineering), Department of Mechanics, Mechatronics and Robotics

Kursk



A. E. Karlov
Southwest State University
Russian Federation

Andrey E. Karlov, Post-Graduate Student, Department of Mechanics, Mechatronics and Robotics

Kursk



References

1. Ergasheva B.I. Lower Limb Exoskeletons: Brief Review. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2017, vol. 17, no. 6, pp. 1153-1158.

2. Jatsun S., Savin S., Yatsun A., Turlapov R., Adaptive control system for exoskeleton performing sit-to-stand motion. In Mechatronics and its Applications (ISMA), 10th International Symposium. 2015, pp. 1-6. IEEE.

3. Jatsun S., Savin S., Yatsun A. Improvement of energy consumption for a lower limb exoskeleton through verticalization time optimization. In Control and Automation (MED), 2016 24th Mediterranean Conference 2016, pp. 322-326. IEEE.

4. Jatsun S., Savin S., Yatsun A. Motion Control Algorithm for a Lower Limb Exoskeleton Based on Iterative LQR and ZMP method for trajectory generation.

5. Jatsun S., Savin S, Yatsun A. Study of controlled motion of an exoskeleton performing obstacle avoidance during a single support walking phase. In System Theory, Control and Computing (ICSTCC), 2016 20th International Conference 2016, pp. 113-118. IEEE.

6. Jatsun S., Savin S., Yatsun A., Comparative analysis of global optimization-based controller tuning methods for an exoskeleton performing push recovery. In System Theory, Control and Computing (ICSTCC), 2016, 20th International Conference, pp. 107-112. IEEE.

7. Gavrilov S. V., Zang D. T. Komp'yuternoye modelirovaniye dinamiki dvizheniya pyatistepennogo shagayushchego robota [Computer simulation of the dynamics of motion of a five-step walking robot]. AEE Avtomatizatsiya v elektroenergetike i elektrotekhnike = AEE Automation in the electric power industry and electrical engineering, 2016, no. 1, pp. 72-76. (In Russ.).

8. Domrachev T.B., Yashmetkov K.S., Loskutov Yu.V. Kinematika lokomotsiy cheloveka pri vstavanii iz seda i posadke na oporu [Kinematics of human locomotion when standing up from a gray-haired vehicle and landing on a support]. Inzhenernye kadry budushchee innovatsionnoi ekonomiki Rossii = Engineering staff – the future of Russia's innovative economy, 2017, no. 1, pp. 40-42 (In Russ.).

9. Lavrovskiy E.K. Ob energetike pokhodki cheloveka-operatora, osushchestvlyayemoy pri pomoshchi apparata “passivnyy” ekzoskeleton [On the energy of the gait of a human operator, carried out using the apparatus “passive” exoskeleton]. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela = News of the Russian Academy of Sciences. Solid mechanics, 2015, no. 1, pp. 9-24 (In Russ.).

10. Lushnikov B.V, Skrylnikov N. Ye. Imitatsionnaya model' protsessa vertika-lizatsii ekzoskeleta nizhnikh konechnostei v srede Simmechanics / MATLAB s uchetom sukhogo treniya v kinematicheskikh parakh [Simulation model of the process of verticalization of the exoskeleton of the lower extremities in Simmechanics / MATLAB medium taking into account dry friction in kinematic pairs]. Vibratsionnye tekhnologii, mekhatronika i upravlyaemye mashiny. Sbornik nauchnykh statei po materialam XI Mezhdunarodnoi nauchnotekhnicheskoi konferentsii [Vibration technologies, mechatronics and controlled machines. Collection of scientific articles based on the Materials of the XI International scientific and technical conference], Kursk, 2016, pp. 261-271 (In Russ.).

11. Pavlovsky V.E. et al. Biomekhatronnyy kompleks neyroreabilitatsii—kontseptsiya, konstruktsiya, modeli i upravleniye [Biomechatronic neurorehabilitation complex — concept, construction, models and control]. Preprinty Instituta prikladnoy matematiki im. MV Keldysha RAN = Preprints of the Institute of Applied Mathematics named after MV Keldysh RAS, 2014, no. 10, pp. 111-19 (In Russ.).

12. Vitiello N., Lenzi T., Roccella S., De Rossi S. M.M., Cattin E., Giovacchini F., Vecchi F. Moscow, Carrozza NEUROExos: A powered elbow exoskeleton for physical rehabilitation. Robotics, IEEE Transactions on 29, no. 1 (2013), pp.220-235.

13. Pavlovskiy V.Ye., Platonov A.K., Aliseychik A.P., Orlov I.A., Pavlovskiy V.V., Ptakhin A.A. Neyroreabilitatsionnyy kompleks: struktura, upravleniye dvizheniyem ekzoskeletnykh moduley [Neurorehabilitation complex: structure, motion control of exoskeletal modules]. Vibratsionnye tekhnologii, mekhatronika i upravlyaemye mashiny. Sbornik nauchnykh statei po materialam XI Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii [Vibration technologies, mechatronics and controlled machines. Collection of scientific articles based on the Materials of the XI International scientific and technical conference]. Kursk, 2014, pp. 312-322 (In Russ.).

14. Lavrenov R.O., Magid Ye.A., Matsuno F., Svinin M.M., Sutakorn D. Razrabotka i implementantsiya splayn-algoritma planirovaniya puti v srede ROS/GAZEBO [Development and implementation of the spline-path planning algorithm in the ROS / GAZEBO environment]. Trudy SPIIRAN = SPIIRAS Proceedings, 2019, vol. 18, no. 1, pp. 57-84 (In Russ.).

15. Khusainov R.R., Klimchik A.S., Magid Ye.A. Optimizatsiya parametrov dvizheniya dvunogogo shagayushchego robota [Optimization of motion parameters of a biped walking robot]. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta = Proceedings of the Volgograd State Technical University, 2018, no. 13 (223), pp. 119-125 (In Russ.).

16. Zoss A.B., Kazerooni H., Chu A., Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Transactions On Mechatronics, 2006, no. 11(2), pp.128-138.

17. Aliseychik A.P. i dr. Mekhanika i upravleniye ekzoskeletami nizhnikh konechnostey dlya neyroreabelitatsii spinal'nykh bol'nykh [Mechanics and control of exoskeletons of the lower extremities for neurorehabitation of spinal patients]. XI Vserossiyskiy s"yezd po fundamental'nym problemam teoreticheskoy i prikladnoy mekhaniki. Sbornik [XI All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics. Collection]. Kazan, 2015, pp. 132-134 (In Russ.).

18. Borisov A. V., Rozenblat G. M., Chigarev A. V. Primeneniye matrichnogo metoda i rekurrentnogo algoritma k modeli ploskogo mnogozvennogo mekhanizma so zven'yami peremennoy dliny, dvizhushchegosya po gorizontal'noy ploskosti [Application of the matrix method and the recurrent algorithm to the model of a plane-multipurpose mechanism with lines of variable length moving on a horizontal plane]. Teoreticheskaya i prikladnaya mekhanika. Nauchno-tekhn. sbornik [Theoretical and applied mechanics. International scientific and technical collection]. Minsk, 2018, pp. 370-380 (In Russ.).

19. Borisov A.V. Mekhanika prostranstvennoy modeli ekzoskeleta i antropomorfnogo robota [The mechanics of the spatial model of the exoskeleton and anthropomorphic robot]. Voprosy oboronnoy tekhniki. Seriya 16: Tekhnicheskiye sredstva prodivodeystviya terrorizmu = Questions of defense technology. Series 16: Technological Tools for Combating Terrorism, 2018, no. 3-4, pp. 46-55 (In Russ.).

20. Aliseychik A.P. Orlov I.A. Kolesnichenko Ye.Yu. Pavlovskiy V.Ye. Pavlov- skiy V.V. Platonov A.K. Reabilitatsionnyy ekzoskelet BioMekh: modeli, upravleniye, konstruktsiya, eksperiment [Rehabilitation exoskeleton BioMech: models, management, design, experiments]. Mekhatronika, avtomatizatsiya, upravleniye = Mechatronics, automation, control, 2016, no.17(10), pp. 670-677 (In Russ.).

21. Vorob'yev A.A., Petrukhin A.V., Zasypkina O.A., Krivonozhkina P.S. Osnovnyye kliniko-anatomicheskiye kriterii dlya razrabotki ekzoskeleta verkhney konechnosti [The main clinical and anatomical criteria for the development of the exoskeleton of the upper limb]. Zhurnal anatomii i gistopatologii = Journal of anatomy and histopathology, 2014, vol. 3, no. 1, pp. 20-26 (In Russ.).


Review

For citations:


Yatsun S.F., Loktionova O.G., Al Manji Kh., Yatsun A.S., Karlov A.E. Simulation of Controlled Motion of a Person When Walking in an Exoskeleton. Proceedings of the Southwest State University. 2019;23(6):133-147. (In Russ.) https://doi.org/10.21869/2223-1560-2019-23-6-133-147

Views: 1177


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)