Preview

Proceedings of the Southwest State University

Advanced search

Stability of Frame-Rod Structural Systems on Subsiding Soils

https://doi.org/10.21869/2223-1560-2019-23-5-117-128

Abstract

Purpose of research.   To meet the requirements of Federal Law No. 384 “Technical Regulation on the Safety of Buildings and Structures”, a deeper study of the stability of frame-rod structural systems in the event of an emergency associated with subsidence of the base of one of the supports, and the development of a methodology for assessing the resource of resistance of building elements located in difficult engineering and geological conditions.

Methods. As a stability criterion, the sign of the work of the end moments and transverse forces is adopted. A negative value of this work is a sign of "active" loss of stability of the rod, a positive - "passive". In the event of an emergency related to the subsidence of one of the frame supports, the work of the longitudinal force ceases to contribute to the bifurcation of the rod. Therefore, at a certain strain value Ssl, a separate rack can go from active loss of stability to passive, changing the critical stability parameters of the entire system as a whole. The formula for determining the critical drawdown S_cr is given.

Results. A two-span frame is considered, in which the central strut is loaded with the force Pkr, the extreme - with the forces αPkr. The type of rod bifurcation is determined. Using the above equations, critical parameters and forms of buckling of the structural system under consideration were found before and after the emergency in question. An assessment is given of the influence of the draft of the base of the supports of the frame racks on the character of the bifurcation of the rods of the structural system as a whole. The analysis of the dependence of the critical drawdown value Ssl, cr. on the loading scheme of the frame under consideration is performed. It is shown that when the coefficient of load application is α = 0.6, at the first stage, when the system in question is stable, the first rack loses stability passively, the rest actively. When the base of the second pillar sags by 21 mm or more, a change in the type of its bifurcation occurs, while the critical stability parameters of the remaining elements do not change significantly. In the event of a similar emergency with the base of the right frame pillar, the critical drawdown value is 140 mm. Moreover, a change in the type of bifurcation of the third pillar leads to the transition of the first pillar to active bifurcation, as a result of which the critical parameters of the entire system as a whole change significantly.

Conclusion. An analysis of the calculation results showed that with a certain drawdown value, the emergency in question will lead to a change in the nature of the bifurcation of both individual elements and the entire structural system  as  a  whole.  The  proposed  stability  criterion  for  frame-rod  structural  systems,  the  basis  of  which  are subsidence soils, makes it possible to relatively easily identify elements with low resistance to buckling in difficult engineering and geological conditions.

 

About the Authors

K. O. Dubrakova
Southwest State University
Russian Federation

Ksenia O. Dubrakova - Cand. of Sci. (Engineering), Associate Professor, Industrial and Civil Construction Department.

50 Let Oktyabrya str. 94, Kursk 305040.



S. V. Dubrakov
Southwest State University
Russian Federation

Sergey V. Dubrakov - Associate Professor, Department of Industrial and Civil Construction.

50 Let Oktyabrya str. 94, Kursk 305040.



I. V. Zavalishin
Southwest State University
Russian Federation

Ilya V. Zavalishin - Engineer, Department of Industrial and Civil Engineering.

50 Let Oktyabrya str. 94, Kursk 305040.



References

1. Aleksandrov A.V., Travush V.I., Matveev A.V. Issledovanie ustoichivosti konstruktsii arochnogo pokrytiya zala s ispol'zovaniem kriteriev vyyavleniya naibolee opasnykh elementov [Study of the stability of the structures of the arched covering of the hall using the criteria for identifying the most dangerous elements]. Vestnik otdeleniya stroitel'nykh nauk RAASN = Bulletin of the Department of Construction Sciences of the RAAS, 2004, vol. 8, pp. 14-21 (In Russ.).

2. Alexandrov A. V., Matveev A. V. [Criteria for identifying the most dangerous elements and their use in problems of structural stability]. Bezopasnost' dvizheniya poezdov. Tr. 4-i nauch.-prakt. konf. [Traffic safety. Tr. 4th scientific and practical conf.]. Moscow, MIIT, 2003, S. III — 1 — III — 2 (In Russ.).

3. Alexandrov A. V., Travush V. I., Matveev A. V. O raschete sterzhnevykh konstruktsii na ustoichivost' [On the calculation of bar structures for stability]. Promyshlennoe i grazhdanskoe stroitel'stvo = Industrial and civil construction, 2002, no. 3, pp. 16-20 (In Russ.).

4. Aleksandrov A. V. Rol' otdel'nykh elementov sterzhnevoi sistemy pri potere ustoichivosti [The role of individual elements of the core system in case of loss of stability]. Vestnik MIITa = Bulletin of MIIT, 2001, vol. 5, pp. 46 (In Russ.).

5. Dubrakova K. O. Voprosy ustoichivosti staticheski neopredelimykh sistem iz drevesiny [Issues of stability of statically indeterminate systems of wood]. BST: Byulleten' stroitel'noi tekhniki = BST: Bulletin of construction equipment, 2018, no. 11, pp. 54-55 (In Russ.).

6. Kolchunov V.I., Prasolov N.O., Kozharinova L.V., Vetrova O.A. K algoritmizatsii zadach rascheta zhivuchesti zhelezobetonnykh ram pri potere ustoichivosti [To the algorithmization of problems of calculating the survivability of reinforced concrete frames with loss of stability]. Stroitel'stvo i rekonstruktsiya = Construction and reconstruction, 2012, no. 6, pp. 28-34 (In Russ.).

7. Matveev A. V. Nekotorye voprosy sozdaniya spetsializirovannogo programmnogo kompleksa dlya analiza mostovykh konstruktsii [Some issues of creating a specialized soft-ware complex for the analysis of bridge structures]. Vestnik MIITa = Bulletin of MIIT, 2002, vol. 7, pp. 76—83 (In Russ.).

8. Pakhomova E.G., Dubrakova K.O. Rabotosposobnost' zhelezobetonnykh ramno-sterzhnevykh sistem v slozhnykh inzhenerno-geologicheskikh usloviyakh [Efficiency of reinforced concrete frame-rod systems in complex engineering-geological conditions]. BST: Byulleten' stroitel'noi tekhniki = BST: Bulletin of construction equipment, 2019, no. 5, pp. 46-48 (In Russ.).

9. Pakhomova E.G., Dubrakova K.O., Dubrakov S.V. Ustoichivost' ramno-sterzhnevykh korrozionno-povrezhdaemykh zhelezobetonnykh konstruktivnykh sistem [Stability of framerod corrosion-damaged reinforced concrete structural systems]. BST: Byulleten' stroitel'noi tekhniki = BST: Bulletin of construction equipment, 2019. no. 7, pp. 54-56 (In Russ.).

10. Pakhomova E.G., Bredikhina N.V. Veroyatnostnye zakonomernosti vozniknoveniya otkazov stroitel'nogo potoka [Probability Regularities of Construction Flow Failure Occurrence]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2016, no. 1, pp. 35-40 (In Russ.).

11. Pakhomova E.G., Pereverzev E.O., Konorev D.F. Dolgovechnost' zhelezobetonnykh konstruktsii inzhenernykh sooruzhenii pri vozdeistvii agressivnykh sred [Durability of rein-forced concrete structures of engineering structures when exposed to aggressive environments]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologie, 2014, no.1, pp. 72-74 (In Russ.).

12. Pakhomova E.G. Raschet nesushchei sposobnosti izgibaemykh zhelezobetonnykh konstruktsii pri korrozionnykh povrezhdeniyakh [Calculation of the bearing capacity of bent reinforced concrete structures with corrosion damag]. Promyshlennoe i grazhdanskoe stroitel'stvo = Industrial and civil engineering, 2009, no. 5, pp. 43-44 (In Russ.).

13. Travush V.I., Kolchunov V.I., Dmitrieva K.O. Ustoichivost' szhatykh sterzhnei iz drevesiny pri odnovremennom proyavlenii silovogo i sredovogo vozdeistviya [Stability of compressed rods made of wood with the simultaneous manifestation of force and environmental impact]. Stroitel'naya mekhanika i raschet sooruzhenii = Structural mechanics and calculation of structures, 2016, no. 2, pp. 50-53 (In Russ.).

14. Travush V.I., Kolchunov V.I., Dmitrieva K.O. Eksperimental'no-teoreticheskoe issledovanie prochnosti i ustoichivosti szhatykh sterzhnei iz drevesiny pri silovom i sredovom vozdeistvii [Experimental and theoretical study of the strength and stability of compressed wood rods under force and environmental impact]. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil'noi promyshlennosti = News of higher educational institutions. Technology of the textile industry, 2016, no. 3, pp. 280-285 (In Russ.).

15. Emelyanov S.G., Pakhomova E.G. Reliability of RC frame-braced systems in dangerous geological conditions. Journal of Applied Engineering Science Paper number: 17 (2019) 2, 602, pp. 245 - 250.

16. Bagdasarov Yu. A. O dostovernosti otsenki prosadochnosti gruntov [On the reliability of estimates of subsidence of soils]. Osnovaniya, fundamenty i mekhanika gruntov = Foundations, foundations and soil mechanics, 2000, no. 2, pp. 21-26 (In Russ.).

17. Burenin V.S., Yezersky V.A., Monastyrev P.V. Issledovanie sovremennykh tendentsii proektirovaniya zhilykh zdanii v rossii i za rubezhom [The study of modern trends in the design of residential buildings in Russia and abroad]. Arkhitektura i vremya = Architecture and Time, 2017, no. 5, pp. 2-6 (In Russ.).

18. Grigoryan A.A. O kolichestvennoi otsenki prosadochnosti [Changes in the Physic-Mechanical Characteristics of the Soil of the Operated Foundation]. Osnovaniya, fundamenty i mekhanika gruntov = Foundations, foundations and soil mechanics, 2001, no. 2. pp. 17-21 (In Russ.).

19. Dubrakova K.O., Kutsenko O.I., Kartsev I.N. Izmenenie fiziko-mekhanicheskikh kharakteristik grunta ekspluatiruemogo osnovaniya [Change of physical and mechanical characteristics of the soil of the operated base]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2019, no. 3, pp. 54-64 (In Russ.). https://doi.org/10.21869/2223-1560-2019-23-3-54-64.

20. Mezherovsky V.A. Rasprostranenie vlagi i razvitie prosadochnykh deformatsii v lessovom osnovanii zdaniya [Moisture distribution and the development of subsidence deformations in the loess base of the building]. Osnovaniya, fundamenty i mekhanika gruntov = Foundations, foundations and soil mechanics, 1998, no. 1, pp. 20-22 (In Russ.).

21. Mezherovsky V.A. Raschetnye modeli sistemy «zdanie – lessovoe prosadochnoe osnovanie» [Settlement models of the system “building - loess subsidence base”]. Osnovaniya, fundamenty i mekhanika gruntov = Foundations, foundations and soil mechanics, 2001, no. 5, pp.. 21-23 (In Russ.).

22. Klyueva N.V., Dmitrieva K.O. Analiz ustoichivosti sterzhnevykh konstruktsii [Analysis of stability of core structures]. Nauchnyi Vestnik Voronezhskogo gosudarstvenngo arkhitekturno-stroitel'nogo universiteta. Stroitel'stvo i arkhitektura = Scientific Bulletin of the Voronezh State Architectural and Construction University. Construction and architecture, 2016, no.3(43), pp. 17-24 (In Russ.).


Review

For citations:


Dubrakova K.O., Dubrakov S.V., Zavalishin I.V. Stability of Frame-Rod Structural Systems on Subsiding Soils. Proceedings of the Southwest State University. 2019;23(5):117-128. (In Russ.) https://doi.org/10.21869/2223-1560-2019-23-5-117-128

Views: 546


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)