Preview

Proceedings of the Southwest State University

Advanced search

Control Mechanisms of Additive Shaping Error with the Use of Hybrid Design Devices

https://doi.org/10.21869/2223-1560-2019-23-5-23-34

Abstract

Purpose of research. The study is aimed at improving the accuracy of shaping the surface layer of mechanical engineering products by additive methods.

Methods. Shaping of parts surfaces by additive methods is characterized by high values of shaping error (approximation.)To reduce this error it is necessary to ensure the orientation of the surface at which the normal at the point of the surface being shaped will coincide with the axis of the final link of the shape-generating system. To ensure the orientation of the surface being shaped, the use of equipment for additive shaping with a hybrid design is proposed.

Results.The model of shape-generating system of the equipment for additive shaping with hybrid design has been developed. The problem of parametric synthesis of hybrid design technological equipment for additive shaping has been solved, as a result of which the necessary shaping capabilities of the equipment have been provided. The calculation method of kinematic error of additive shaping has been developed, which allows you to choose such engine and driver of additive equipment that wiil make it possible to obtain the necessary accuracy of shaping.

Conclusion.The developed technique allows us to solve the problem of parametric synthesis of hybrid design technological equipment based on the condition of providing a given value of the kinematic component of additive shaping error.

About the Authors

A. N. Grechukhin
Southwest State University
Russian Federation

Alexander N. Grechukhin - Cand. of Sci. (Engineering), Associate Professor, Machine Building and Equipment Department.

50 Let Oktyabrya str. 94, Kursk 305040.



V. V. Kuts
Southwest State University
Russian Federation

Vadim V. Kuts - Dr. of Sci. (Engineering), Associate Professor, Machine Building and Equipment Department.

50 Let Oktyabrya str. 94, Kursk 305040.



A. V. Oleshitsky
Southwest State University
Russian Federation

Alexey V. Oleshitsky – Undergraduate.

50 Let Oktyabrya str. 94, Kursk 305040.



M. S. Razumov
Southwest State University
Russian Federation

Michael S. Razumov - Cand. of Sci. (Engineering), Associate Professor, Machine-Building Technologies and Equipment Department.

50 Let Oktyabrya str. 94, Kursk 305040.



References

1. Burns M. Automated Fabrication: Improving Productivity in Manufacturing. Englewood Cliffs. N.J. USA: PTR Prentice Hall, 1993, 369 pp.

2. Saprykin A. A. Povyshenie proizvoditel'nosti protsessa selektivnogo lazernogo spekaniya pri izgotovlenii prototipov [Increasing the productivity of the process of selective laser sintering in the manufacture of prototypes] Diss. kand. tekhn. nauk. Yurga, 2006, p. 153 (In Russ.).

3. Kuts V. V., Razumov M. S., Grechukhin A. N., Bychkova N. A. Improving the quality of additive methods for forming the surfaces of odd-shaped parts with the application of parallel kinematics mechanisms. International Journal of Applied Engineering Research, 2016, vol. 11, no. 24, pp. 11832-11835.

4. Dobroskok V L, Abdurayimov L. N., Chernyshov S. I. Ratsional'naya orientatsiya izdelii pri ikh posloinom formoobrazovanii na baze iskhodnoi triangulyatsionnoi 3d modeli [Rational orientation of products with their layer-by-layer shaping on the basis of the original triangulation 3d model]. Uchenye zapiski Krymskogo inzhenerno-pedagogicheskogo universiteta = Scientific notes of the Crimean Engineering and Pedagogical University, 2010, no. 24, pp. 13-21 (In Russ.).

5. Singhal S. K., Pandey A. P., Pandey P. M. and Nagpal A. K. Optimum part deposition orientation in stereolithography. Computer-Aided Design & Applications, 2005, vol. 2, pp. 319–328.

6. Hong S. Byun, Kwan H. Lee. Determination of optimal build direction in rapid prototyping with variable slicing. Int. J. Adv. Manuf. Technol, 2006, no. 28, pp. 307–313.

7. Hong S. Byun, Kwan H. Lee. Optimal part orientation of rapid prototyping using a genetic algorithm. Computers & Industrial Engineering, 2004, pp. 426–431.

8. Kim J Y, Lee K and Park J. C. Determination of optimal part orientation in stereolithographic rapid prototyping. Technical Report. Department of Mechanical Design and Production Engineering. Seoul: Seoul National University, 1994, pp. 356-366.

9. Lan P. T., Chou S., Chent Y., Gemmill L. D. Determining fabrication orientations for rapid prototyping with stereolithography apparatus. Computer-Aided Design, 1997, no. 29, pp. 53– 62.

10. Massod S. H., Rattanawong W., Iovenitti P. A generic algorithm for part orientation system for complex parts in rapid prototyping. J. Mater. Process. Technol, 2003, vol. 139, pp 110–116.

11. Egorov I. N. Pozitsionno-silovoe upravlenie robototekhnicheskimi i mekhatronnymi ustroistvami [Position-force control of robotic and mechatronic devices]. Vladimir, 2010, 243 p. (In Russ.).

12. Grechukhin A. N., Kuts V. V., Razumov M. S. Upravlenie prostranstvennoi orientatsiei uzlov robota v protsesse additivnogo formoobrazovaniya izdelii [Control of spatial orientation of robot units in the process of additive forming of products]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of Voronezh State Technical University, 2018, no. 4, pp. 122-129 (In Russ.).

13. Grechukhin A. N., Kuts V. V., Razumov M. S. Eksperimental'noe opredelenie parametrov poperechnogo secheniya edinichnogo sloya pri additivnom formoobrazovanii izdelii [Experimental determination of the cross-section parameters of a single layer in the additive forming products]. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki = News of Tula State University. Technical science, 2018, no. 10, pp. 264-270 (In Russ.).

14. Grechukhin A. N., Kuts V. V., Olesnicki A. V., Simon J. E. Proektirovanie tekhnologicheskogo oborudovaniya dlya additivnogo formoobrazovaniya s gibridnoi komponovkoi [Design of technological equipment for additive shaping with hybrid layout]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of the Voronezh State Technical University, 2019, vol. 15, no. 4, pp. 111-118 (In Russ.).

15. Grechukhin A. N., Kuts V. V., Razumov M. S. Reshenie zadachi approksimatsii krivolineinykh poverkhnostei sloyami s postoyannym i peremennym secheniem pri formoobrazovanii additivnymi metodami [Solution of the problem of approximation of curvilinear surfaces by layers with constant and variable cross-section at forming by additive methods]. Vestnik Bryanskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of the Bryansk State Technical University, 2019, no. 3 (76), pp. 38-40 (In Russ.).

16. Grechukhin A. N.., Kuts V. V., Razumov M. S., Vanin I. V. Dinamicheskoe upravlenie protsessom additivnogo formoobrazovaniya s primeneniem 5-koordinatnogo tekhnologicheskogo oborudovaniya [Dynamic Management of Additive Shaping Process with the Use of 5-Coordinate Processing Equipment]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2019, vol. 23, no. 1, pp. 9-20 (In Russ.). https://doi.org/10.21869/2223-1560-2019-23-1-9-20.

17. Lashnev S. I., Borisov A. N., Emelyanov S. G. Geometricheskaya teoriya formirovaniya poverkhnostei rezhushchimi instrumentami [Geometric theory of surface formation by cutting tools]. Kursk, 1997, 391 p. (In Russ.).

18. Kuts V. V. Metodologiya predproektnykh issledovanii spetsializirovannykh metallorezhushchikh sistem [Methodology of pre-project studies of specialized metal-cutting systems] Diss. dokt. tehn. nauk. Kursk, 2012, p. 366 (In Russ.).

19. Grechishnikov V. A., Kuts V. V., Razumov M. S. et al. Opredelenie pogreshnosti formy detali pri formoobrazovanii planetarnym mekhanizmom metodami geometricheskoi teorii rezaniya [Determination of the error in the shape of a part shaping by a planetary mechanism using the methods of geometric cutting theory], STIN = STIN. 2017, no.4, pp. 24-26 (In Russ.).

20. Grechishnikov V. A., Romanov V. B., Pivkin P. M. Errors in shaping by a planetary mechanism. Russian Engineering Research, 2017, vol. 37, no. 9, pp. 824-826.

21. Grechukhin A. N., Anikutin I. S., Byshkin A. S. Management of space orientation of the end effector of generation of geometry system fiveaxis manufacturing machinery for additive generation of geometry MATEC Web of Conferences 226, 2018, pp. 010-021.

22. Grechukhin A.N, Kuts V.V, Razumov M.S. Ways to reduce the error of additive methods of forming MATEC Web of Conferences, 2018, vol. 226, pp. 023-029.

23. Grechukhin A N, Kudelina D V, Razumov M. S. at al. Development of information-analytical system for technological requests monitoring, taking intoaccount regional specifics. International Conference on Actual Issues of Mechanical Engineering, 157, pp. 198-202.

24. Grechukhin A. N., Kuts V. V., Razumov M.S. Calculation of the controlled parameters of the 6-coordinate robot in the process of additive forming of products. Journal of Physics: Conference, 2019, Series 1210, pp. 1210-1220.


Review

For citations:


Grechukhin A.N., Kuts V.V., Oleshitsky A.V., Razumov M.S. Control Mechanisms of Additive Shaping Error with the Use of Hybrid Design Devices. Proceedings of the Southwest State University. 2019;23(5):23-34. (In Russ.) https://doi.org/10.21869/2223-1560-2019-23-5-23-34

Views: 460


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)