Preview

Proceedings of the Southwest State University

Advanced search

The Morphology of the Volume Plasticity Zones at the Gas-Filled Pores in Cast and Powder Steels under Stress Corrosion

https://doi.org/10.21869/2223-1560-2019-23-5-35-52

Abstract

Purpose of research. The purpose of this work is to develop a method for calculating parameters of volumetric zones of plasticity in powder and cast steels, occurring in the vicinity of pores under external tensile stress and internal gas pressure.

Methods. The problem was solved on the basis of the analysis of the distribution of stress tensor components in the vicinity of discontinuities (pores) of different shapes. A sample under tensile stresses (σ), containing a single stress raiser - a spherical pore with radius "a", and a pore in the form of a biconvex lens, was studied stepwise. The choice of pores morphology was determined by their experimental observation in the structure of real commercial steels, and the presence of a solution for estimating the stress field near the spherical pore, performed by L. D. Landau and E. M. Lifshitz. In comparison with such stress raisers as a tight crack or a pore in the form of a biconvex lens, the stress concentration near a spherical pore is weaker. However, for the processes of diffusion of atoms through the zone of increased stress, not only the intensity of stress is important, but also the size of the zone itself. Near the spherical cavity, the size of the overstressed zone is the largest, so the analysis of its morphology was taken as a basis. In this paper, we used the modeling of functions describing the stress distribution around the pores similarly to the velocity field of an ideal fluid.

Results. As a volume object, the described zones of plasticity are the surfaces of a spheroid and an ellipsoid surrounding spherical and lenticular pores. It is obvious that the smaller the ratio h/l for the pore is, the further in the transverse direction the plasticity zone (more than pmax-l) spreads, becoming tighter and tighter (z1 is approximately proportional to h). The following geometric parameters of the plasticity zones near the lenticular pore were determined as characteristic ones: its greatest length in the radial direction from the apex; the characteristic thickness of the zone (ρmax– l)l/a; the area of the lens; the volume of the zone and its share of the volume of the lens. The development of plasticity zones near pores of different morphologies in steels under stress-corrosion conditions stimulates the change (increase) of the kinetic characteristics of the metal and the creation of favorable conditions for accelerated diffusion (decarburization). In the area of plasticity zones in the vicinity of pores under external and internal (gas pressure) stresses, the creation of channels of facilitated diffusion forms places of nucleation of submicrocracks at points D, B and C. Juvenile free surfaces formed in radial directions create zones of realized accommodation opportunities of the medium - zones of plasticity. Along with the growth of radial cracks to their tops from the pore under high pressure, gases diffuse rapidly.

Conclusion. The stress distribution analysis algorithm proposed in this paper allows predicting the intensity of plasticity zones (crack formation) development depending on the ratio of parameters β (β = σT/ σ) and s (s = p/σ), that is, on the ratio of external stress values, steel yield stress and gas pressure in the pore. The calculation made it possible to clarify the place of nucleation, the shape and scale of the development of zones of plasticity (cracking) in the vicinity of pores of different morphology depending on the ratio of external stress and gas pressure in the pores.

About the Authors

A. N. Chukanov
Tula State Pedagogical University named after L. N. Tolstoy
Russian Federation

Alexander N. Chukanov - Dr. of Sci. (Engineering),  Associate Professor, Professor of the Technology and Service Department.

125 Lenin str., Tula 300026.



V. A. Tereshin
Tula State Pedagogical University named after L. N. Tolstoy
Russian Federation

Valery A. Tereshin - Cand. of Sci. (Physical and Mathematical), Associate Professor, Associate Professor  of the Technology and Service Department.

125 Lenin str., Tula 300026.



A. E. Gvozdev
Tula State Pedagogical University named after L. N. Tolstoy
Russian Federation

Aleksandr E. Gvozdev - Dr. of Sci. (Engineering), Professor.

125 Lenin str., Tula 300026.



S. N. Kutepov
Tula State Pedagogical University named after L. N. Tolstoy
Russian Federation

Sergey N. Kutepov - Cand. of Sci. (Pedagogical).

125 Lenin str., Tula 300026.



A. N. Sergeev
Tula State Pedagogical University named after L. N. Tolstoy
Russian Federation

AleksandrN. Sergeev - Dr. ofSci. (Pedagogical), Professor.

125 Lenin str., Tula 300026.



E. V. Ageev
Southwest State University
Russian Federation

Evgeniy V. Ageev - Dr. of Sci. (Engineering), Professor.

50 Let Oktyabrya str. 94, Kursk 305040.



A. A. Yakovenko
LLC "Metallurg-Tulamash"
Russian Federation

Alexandra A. Yakovenko - Cand. of Sci. (Engineering), Engineer.

2 Mosina str., Tula 300002.



References

1. Sergeev N. N., Chukanov A. N., Baranov V. P., Yakovenko A. A. Development of Damage and Decarburization of High-Strength Low-Alloy Steels Under Hydrogen Embrittlement. Metal Science and Heat Treatment, 2015, vol. 57, no. 1, pp. 63-68.

2. Chukanov A. N., Sergeev N.N., Tikhonov I. V., Yakovenko A. A., Leontiev I. M. Vzaimosvyaz' povrezhdaemosti i pereraspredeleniya primesei vnedreniya v konstruktsionnykh stalyakh pri deformatsii i korrozionnom vozdeistvii [The relationship of damage and redistribution of impurities introduction in structural steels under deformation and corrosion]. Deformatsiya i razrushenie = Deformation and destruction, 2015, no. 6, pp. 37-42 (In Russ.).

3. Davydov Yu. I., Ageev V. S., Sergeev N. N. Obezuglerozhivanie stali v agressivnoi srede [Decarburization of steel in an aggressive environment]. Tekhnologiya mashinostroeniya = Mechanical engineering technology, 1974, vol. 35, pp. 145-152 (In Russ.).

4. Kolachev B. A. Vodorodnaya khrupkost' metallov [Hydrogen brittleness of metals]. Moscow, Metallurgiya Publ., 1985, 217 p. (In Russ.).

5. Chukanov A. N., Levin D. M., Yakovenko A. A. Use and Prospects for the Internal Friction Method in Assessing the Degradation and Destruction of Iron-Carbon Alloys. Bulletin of the Russian Academy of Sciences. Physics, 2011, vol. 75, no. 10, pp. 1340-1344. ISSN 1062-8738.

6. Chukanov A. N., Sergeev N. N., Tereshin V. A., Rostovtsev R. N., Yakovenko A. A., Leontiev I. M. Termodinamicheskoe obosnovanie «metanovogo» mekhanizma destruktsii uprochnennykh konstruktsionnykh stalei pri elektroliticheskom navodorozhivanii pod napryazheniem [Thermodynamic study "methane" mechanism of destruction of reinforced structural steel in the electrolytic hydrogen absorption under stress]. Deformatsiya i razrushenie materialov = Deformation and fracture of materials, 2015, no. 10, pp. 32-39 (In Russ.).

7. Leontiev I. M., Chukanov A. N., Sergeev N. N., Yakovenko A. A. [Decarburization, hydrogen brittleness and aging of high-strength steels under conditions of electrolytic hydrogenation]. Mater. mezhd. konf. "XXI Peterburgskie Chteniya po problemam prochnosti" [Mater. intl. Conf. "XXI Petersburg Readings on strength problems]. Saint-Petersburg, 2014, pp. 194-197 (In Russ.).

8. Landau L. D., Lifshitz E. M. Teoriya uprugosti [Theoretical physics]. Vol. VII. Theory of elasticity. Moscow, Nauka Publ., 1982, 248 p. (In Russ.).

9. Vladimirov V. I. Teoriya funktsii kompleksnoi peremennoi [Physical heat of metal destruction]. Moscow, Metallurgy Publ., 1984, 280 p. (In Russ.).

10. Sveshnikov A. G., Tikhonov A. N. Teoriya funktsii kompleksnoi peremennoi [Theory of functions of a complex variable]. Moscow, Fizmatlit Publ., 2010, 336 p. (In Russ.).

11. Sergeev N. N., Tereshin V. A., Sergeev A. N., Khonelidze D. M., Gvozdev A. E., Chukanov A. N., Leont ev I. M., Kolmakov A. G., Yakovenko A. A. Formation of Plastic Zones near Spherical Cavity in Hardened Low-Carbon Steels under Conditions of Hydrogen Stress Corrosion. Inorganic Materials: Applied Research, 2018, vol. 9, no. 4, pp. 663-669.

12. Sergeyev N. N., Izvolsky V. V., Sergeyev A. N., Kutepov S. N., Gvozdev A. E., Ageev E. V., Clementyev D. S. Vliyanie mikrostrukturnykh faktorov i termicheskoi obrabotki na korrozionnuyu stoikost' armaturnoi stali klassa A600 [The influence of microstructural factors and heat treatment on the corrosion resistance of reinforcing steel of class A600]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2018, vol. 22, no. 2(77), pp. 52-63 (In Russ.). https://doi.org/10.21869/2223-1560-2018-22-2-52-63.

13. Sergeev N. N., Izvol'skiy V. V., Sergeev A. N., Kutepov S. N., Gvozdev A. E., Pantjuhin O. V. Vliyanie tekhnologicheskikh rezhimov uprochneniya armaturnogo prokata dlya kompozitsionnykh zhelezobetonnykh konstruktsii na chuvstvitel'nost' k korrozionno-mekhanicheskomu razrusheniyu [The impact of technological modes of hardening of reinforcing bars for composite concrete structures for sensitivity to corrosion-mechanical failure]. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki = News of Tula State University. Technical science, 2019, vol. 3, pp. 558-568 (In Russ.).

14. Sergeev N. N., Sergeev A. N., Kutepov S. N., Gvozdev A. E., Ageev E. V.. Kinetika rasprostraneniya treshchin v metallicheskikh materialakh pri korrozionno-mekhanicheskom razrushenii [Kinetics of crack propagation in metal materials under corrosion-mechanical fracture]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series Engineering and Technologies, 2018, vol. 8, no. 1 (26), pp. 24-37 (In Russ.).

15. Sergeev N.N., Sergeev A. N., Kutepov S. N., Gvozdev A. E., Ageev E. V., Clementyev D. S. Issledovanie sravnitel'noi stoikosti armaturnykh stalei v protsesse uskorennykh laboratornykh ispytanii na vodorodnoe rastreskivanie [Study of the comparative resistance of reinforcing steels in the process of accelerated laboratory tests for hydrogen cracking]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series Engineering and Technologies, 2018, vol. 8, no. 1 (26), pp. 38-48 (In Russ.).

16. Sergeev N., Sergeev A. N., Gvozdev A. E., Tikhonov I. V., Kutepov S. N., Ageev E. V. Vliyanie urovnya rastyagivayushchikh napryazhenii na dlitel'nuyu prochnost' armaturnykh stalei v vodorodsoderzhashchikh sredakh [Influence of the level of tensile stresses on the long-term strength of reinforcing steels in hydrogen-containing media]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series Engineering and Technologies, 2018, vol. 8, no. 2 (27), pp. 6-19 (In Russ.).

17. Sergeev N. N., Sergeev A. N., Kutepov S. N., A Gvozdev. E., Ageev E. V. Vliyanie temperatury otpuska na stoikost' armaturnoi stali 20GS2 protiv vodorodnogo rastreskivaniya [The influence of the tempering temperature of for resistance of reinforcing steel 20GS2 against hydrogen cracking]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2018, vol. 8, no. 2 (27), pp. 54-67 (In Russ.).

18. Breki A. D., Tolochko O. V., Vasilyeva E. S., Gvozdev A. E., Starikov N. E. Vzaimodeistvie dispersnykh komponentov smazochnogo kompozitsionnogo materiala, soderzhashchego nanochastitsy dikhal'kogenidov vol'frama [Interaction of dispersed components of lubricant composite material containing nanoparticles of tungsten dichalcogenides]. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki = Proceedings of Tula State University. Technical science, 2015, no. 5, pt. 2, pp. 136-144 (In Russ.).

19. Gvozdev A. E., Sergeev N. N., Minaev I. V., Kolmakov A. G., Tikhonova I. V., Sergeev A. N., Provotorov D., Janelidze D. M., Maly D. V., Golyshev I. V. Raspredelenie temperatur i struktura v zone termicheskogo vliyaniya dlya stal'nykh listov posle lazernoi rezki [The distribution of temperature and structure in the heat affected zone for steel sheets after laser cutting]. Materialovedenie = Materials Science, 2016, no. 9, pp. 3-7 (In Russ.).

20. Gvozdev A. E., Starikov N. E., Sergeev N.N., Zolotukhin V. I., Sergeev A. N., Kutepov S. N., Breki A. D. Tekhnologiya konstruktsionnykh, ekspluatatsionnykh i instrumental'nykh materialov [Technology of structural, operational and tool materials]. Tula, 2018, 406 p. (In Russ.).

21. Breki A. D., Medvedev V. V., Krylov N.A., Aleksandrov S. E., Gvozdev A. E., Sergeev A. N., Starikov N. E., Provotorov D.A., Sergeev N. N., Mali D. V. Zhidkie i konsistentnye smazochnye kompozitsionnye materialy, soderzhashchie dispersnye chastitsy gidrosilikatov magniya, dlya uzlov treniya upravlyaemykh sistem [Liquid and grease lubricants composite materials containing dispersed particles of magnesium hydrosilicates, for friction control systems]. Tula, 2016. 166 p. (In Russ.).

22. Shorshorov M. Kh., Gvozdev A. E., Zolotukhin V. I., Sergeev A. N., Kalinin A. A., Breki A. D., Sergeev N. N., Kuzovlev O. V., Starikov N. E., Mali D. B. Razrabotka progressivnykh tekhnologii polucheniya i obrabotki metallov, splavov, poroshkovykh i kompozitsionnykh nanomaterialov [Development of progressive technologies for the production and processing of metals, alloys, powder and composite nanomaterials]. Tula, 2016. 235 p. (In Russ.).

23. Breki A. D., Gvozdev A. E., Kolmakov A. G., Starikov N. E., Provotorov D. A., Sergeyev N. N., Khonelidze D. M. On friction of metallic materials with consideration for superplasticity phenomenon. Inorganic Materials: Applied Research. 2017, vol. 8, no. 1, pp. 126-129.

24. Gvozdev A. E., Sergeev N. N., Minaev I. V., Tikhonov I. V., Kolmakov A. G. Rol' protsessa zarodysheobrazovaniya v razvitii nekotorykh fazovykh perekhodov pervogo roda [The role of nucleation in the development of some phase transitions of the first kind]. Materialovedenie = Materials Science, 2015, no. 1, pp. 15-21 (In Russ.).

25. Zhuravlev G. M., Gvozdev A. E., Sergeev N. N., Provotorov D. A. Vliyanie deformatsionnoi povrezhdaemosti na formirovanie mekhanicheskikh svoistv malouglerodistykh stalei [Influence of deformation damage on the formation of mechanical properties of low-carbon steel]. Proizvodstvo prokata = Production of rolled products, 2015, no. 12, pp. 9-13 (In Russ.).

26. Baranov V. P., Gvozdev A. E., Kolmakov A. G., Sergeev N. N., Chukanov A. N. Mnogourovnevyi podkhod k probleme zamedlennogo razrusheniya vysokoprochnykh konstruktsionnykh stalei pod deistviem vodoroda [Multilevel approach to the problem of delayed destruction of high-strength structural steels under the action of hydrogen]. Materialovedenie = Materials Science, 2017, no. 7, pp. 11-22 (In Russ.).


Review

For citations:


Chukanov A.N., Tereshin V.A., Gvozdev A.E., Kutepov S.N., Sergeev A.N., Ageev E.V., Yakovenko A.A. The Morphology of the Volume Plasticity Zones at the Gas-Filled Pores in Cast and Powder Steels under Stress Corrosion. Proceedings of the Southwest State University. 2019;23(5):35-52. (In Russ.) https://doi.org/10.21869/2223-1560-2019-23-5-35-52

Views: 582


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)