Preview

Proceedings of the Southwest State University

Advanced search

The Study of Particle Size Distribution of Electroerosion Chrome-Containing Powder, Used for Wear Resistant Surfacing

https://doi.org/10.21869/2223-1560-2019-23-4-31-41

Abstract

Perpose of research. To study the particle size distribution of electroerosive chrome-containing powder, suitable for surfacing.

Methods.To carry out the planned studies, chrome-containing steel wastes were selected. The carbon-containing working fluid was chosen as the working fluid, namely, lighting kerosene. To obtain chrome-containing powder materials by electroerosive dispersion the device for EED of conductive materials was used. The dispersible material was poured into a desiccator, filled with a working fluid, namely, lighting kerosene. The authors studied the particle size distribution of the obtained powders by the method of dispersion in a liquid with ultrasound. Research technique (FR 1.27.2009.06762 “Methodology for measuring particle size in suspensions, emulsions and aerosols in the nanometer and colloidal ranges using the effect of dynamic light scattering”) has been used.

Results. It is experimentally established that the particle shape of the obtained powder material is due to the form in which the material is ejected from the hole during the EED process. It is also seen that particles having a regular spherical or elliptical shape prevail in the powder material. They are obtained by crystallization of the molten material (liquid phase). The particles formed during crystallization of the boiling material (vapor phase) have an irregular shape, an order of magnitude smaller than the particles formed by their liquid phase, and usually agglomerate with each other on the surface of other particles. In the EED process, such particles are most susceptible to chemical and phase changes.

Conclusion. Studies of the particle size distribution of chrome-containing powder material obtained by electroerosive dispersion of waste in lighting kerosene  under the following electrical parameters of the operation of the EED unit: capacity of discharge capacitors 45 μF, voltage at the electrodes 100 ... 110 V, pulse repetition rate of the generator 55 ... 65 Hz  determine the average particle size of the powder material and the specific surface area. The results will allow us to determine the rational area of their practical application.

About the Authors

E. V. Ageeva
Southwest State University
Russian Federation
Ekaterina V. Ageeva, Candidate of Engineering Sciences, Associate Professor, Associate Professor 



S. V. Hardikov
Southwest State University
Russian Federation
Sergey V. Hardikov, Candidate of Engineering Sciences, Department of Automobiles and Motor Vehicles


I. A. Morozova
Kursk State Agricultural Academy
Russian Federation
Irina A. Morozova, Master's Degree Student


References

1. Safdar A., Wei L. Y., Snis A., Lai Z. Evaluation of microstructural development in electron beam melted Ti–6Al–4V. Characterization Of Materials, 2012, vol. 65,pp. 8-15.

2. Safdar A., He H. Z., Wei L. Y., et al. Influence of technological parameters and thickness settings on surface roughness of EBM produced by Ti–6Al-4V.Journal of Rapid Prototyping, 2012,vol. 18 (5),pp. 401-408.

3. Karlsson J., Snis A., Engqvist H., Lausmaa J. Characterization and comparison of materials obtained by electron beam melting (EBM) of two different ti–6Al-4V powder fractions. Journal of materials processing technology, 2013, vol. 213 (12),pр. 2109-2118.

4. Loeber L., Biamino S., Ackelid U. et al. Comparison of selective laser and electron beam melts of titanium Aluminides. Conference paper of the 22nd International Symposium "Solid freeform fabrication proceedings", University of Texas, Austin, 2011,pp. 547-556.

5. Biamino S., Penna A., Ackelid U. et al. Electron beam melting of Ti–48Al–2Cr–2Nb alloy: investigation of microstructure and mechanical properties. Intermetallics, 2011, vol. 19,pp. 776-781.

6. GU D. D., Miners W., Wissenbach K. R. Poprawe laser additive manufacturing of metal parts: materials, processes and mechanisms. International Material Reviews, 2012, vol. 57 (3),pp. 133-164.

7. Song B., Dong S., Zhang B. et al. Influence of technological parameters on the microstructure and mechanical properties of selective laser melt Ti6Al4V. Materials&Design, 2012, vol. 35,pp. 120-125.

8. Song B., Dong S., Coddet P. et al. Fabrication and characterization of the microstructure of selective laser-melted FeAl intermetallic parts. Technology of surfaces and coatings, 2012, vol. 206,pp. 4704-4709.

9. WangZ., Guana K., Gaoa M. Microstructure and mechanical properties of the deposited-IN718 by selective laser melting. Journal of alloys and compounds, 2012, vol. 513, pp. 518-523.

10. KovalevoB. Modelirovanie protsessov v tekhnologiyakh lazernogo additivnogo izgotovleniya ob"emnykh metalloizdelii [Modeling of processes in technologies of additive laser manufacturing of bulk metal products].Izvestiya Rossiiskoi akademii nauk. Seriya fizicheskaya =Proceedings of the Russian Academy of Sciences. Series physical. 2016,vol. 80,no. 4,p. 408(In Russ.).

11. Smirnov In.V., Shaikhutdinova E. F. Vnedrenie additivnykh tekhnologii izgo-tovleniya detalei v seriinoe proizvodstvo [Introduction of additive manufacturing technologies of parts in mass production]. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva = Bulletin of Kazan state technical University. A. N. Tupolev. 2013, no. 2-2, pp. 90-94(In Russ.).

12. Ageev E. V.,Khardikov S. V. [X-ray analysis of the powder obtained by electroerosion dispersion of waste-bearing steel in kerosene lighting].Innovatsii v metalloobrabotke: vzglyad molodykh spetsialistov.Mater. XII Mezhdunar. nauch. konf. [Innovations in Metalworking: a view of young professionals: mater. XII mezhdunar. scientific]. Kursk, 2015, pp. 17-20(In Russ.).

13. Chumakov D. M. Perspektivy ispol'zovaniya additivnykh tekhnologii pri sozdanii aviatsionnoi i raketno-kosmicheskoi tekhniki [Prospects for the use of additive technologies in the creation of aviation and rocket and space technology].Trudy MAI = Proceedings of MAI, 2014,no. 78,pp. 31(In Russ.).

14. Grigoryants A. G., Novichenko D. Yu., Smurov Yu. Lazernaya additivnaya tekhnologiya izgotovleniya pokrytii i detalei iz kompozitsionnogo materiala [Laser additive manufacturing technology of coatings and parts from composite material].Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie = Proceedings of higher educational institutions. Engineering, 2011, is. 7, pp. 38-46(In Russ.).

15. Leucine V.N., Ponomarev S. V., Dmitrieva M. A., IvoninV., TyryshkinM. Modelirovanie protsessa spekaniya izdelii iz nizkotemperaturnoi keramiki, formiruemykh additivnymi tekhnologiyami [Modeling of the sintering process of products from low-temperature ceramics formed by additive technologies].Fizicheskaya mezomekhanika = Physical mesomechanics, 2016,vol. 19, no. 4,pp. 21-27(In Russ.).

16. Ageeva E. V., Altukhov A. Yu., With Gulidin.S., Ageev E. V., Gorokhov A.Fazovyi sostav chastits poroshka, poluchennogo elektroerozionnym dispergirovaniem splava VK8 v butilovom spirte [Phase composition of powder particles obtained by electroerosive dispersion of VK8 alloy in butyl alcohol].Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University.Series: Engineering and Technologies, 2016, no. 1 (18),pp. 20-25(In Russ.).

17. Ageev E. V., Gadalov V.N., Ageeva E. V., Bobryshev R. V. Poroshki, poluchennye elektroerozionnym dispergirovaniem otkhodov tverdykh splavov – perspektivnyi material dlya vosstanovleniya detalei avtotraktornoi tekhniki [Powders, obtained by electroerosion dispersion of waste of hard alloys - promising material for the recovery of parts of automotive engineering].Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2012,no. 1-1 (40),pp. 182-189(In Russ.).

18. Ageev E. V., Ageev E. V., ChaplyginY., Gorokhov A. Razmernye kharakteristiki bronzovogo elektroerozionnogo poroshka, poluchennogo v vode [Sizing bronze spark erosion powder obtained in water].Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University.Series: Engineering and Technologies,2016, no. 1 (18),pp. 30-35(In Russ.).

19. Ageev E. V., Latypov R. A. Poluchenie i issledovanie zagotovok tverdogo splava iz poroshkov, poluchennykh elektroerozionnym dispergirovaniem vol'framsoderzhashchikh otkhodov [Preparation and study of solid alloy blanks from powders obtained by electroerosive dispersion of tungsten-containing wastes].Izvestiya vysshikh uchebnykh zavedenii. Tsvetnaya metallurgiya = Proceedings of higher educational institutions. Nonferrous metallurgy, 2014,no. 5,pp. 50-53(In Russ.).

20. Ageev E. V., Latypov R. A. Production and research of carbide blanks from powders obtained by electroerosion dispersion of tungsten-containing waste.Russian journal of non-ferrous metals. 2014,vol. 55,is.6,pp. 577-580.


Review

For citations:


Ageeva E.V., Hardikov S.V., Morozova I.A. The Study of Particle Size Distribution of Electroerosion Chrome-Containing Powder, Used for Wear Resistant Surfacing. Proceedings of the Southwest State University. 2019;23(4):31-41. (In Russ.) https://doi.org/10.21869/2223-1560-2019-23-4-31-41

Views: 441


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)