Calculation of the Cracking Moment of a Flexible Concrete Element Reinforced with Fiberglass Fitting
https://doi.org/10.21869/2223-1560-2019-23-1-64-73
Abstract
Purpose of reseach. This article discusses the normalized methods for calculating the cracking moment in elements of fine grained concrete, reinforced with fiberglass fitting without prestressing.
Methods. In concrete elements reinforced with composite fitting, it is proposed to determine the cracking moment in the same way as reinforced concrete structures that use a nonlinear deformation model that provides a single connection when calculating the first and second groups of limit states. At the same time in current standards it is allowed to apply the calculation of the cracking moment using the elastoplastic section modulus. Accurate determination of the cracking moment is an important element of the calculation for the second group of limit states, especially the consistency of theoretical data with experimental data for concrete elements reinforced with fiberglass fitting. The following calculation methods are considered: using the elastoplastic moment and calculation using a nonlinear deformation model (two- and three-line diagrams of concrete state with parameters). Experimental data from the experiment have been taken as the initial data for the calculation of the cracking moment for the considered methods. We have considered four beams reinforced with fiberglass fitting, and one - metal. Fitting is without prestressing.
Results. The analysis of the results of the calculation of the cracking moment is carried out by the given methods. For comparison with experimental data, the load on the beam corresponding to the cracking moment is determined. A comparative analysis of the considered methods for the calculation of the cracking moment with experimental data is performed. The calculation using the three-line concrete state diagram is the closest to the experimental results, and when using the technique with the two-line diagram, there is a margin of more than 20%.
Conclusion. These methods, based on the calculation of reinforced concrete structures, provide a reasonable convergence of results when using fiberglass fitting but provide the greatest accuracy to the experimental data for steel fitting within 9%.About the Author
М. V. MorgunovRussian Federation
Mikhail V. Morgunov, Candidate of Engineering Sciences, Associate Professor of Construction design department
3, Prospekt Stanke Dimitrova, Bryansk, 241037
References
1. Astahov Ju.V. Jeksperimental'no-raschetnaja ocenka vzaimodejstvija stal'noj kanatnoj i stekloplastikovoj armatury s betonom. Diss. kand. tekhn. nauk. Novosibirsk, 2002, 139 p.
2. Bekker A.T., Umanskij A.M., Zavgorodnev A.V., Ivanov E.S. Study of Stress and Strain State of Flexible Concrete Elements Strengthened by Basalt-Plastic Reinforcement ANK-BM. Proceedings of the Twenty-fourth (2014) International Ocean and Polar Engineering Conference Busan, Korea, June 15-20, 2014 – p.211-214. ISBN 978-1 880653 91-3 (Set); ISSN 1098-6189 (Set).
3. Vasil'ev V.V. Mehanika konstrukcij iz kompozicionnyh materialov. Moscow, Mashinostroenie Publ., 1986, 265 p.
4. Brik V.B. Advanced Concept Concrete Using Basalt Fiber/BF Composite Rebar Reinforcement, Washinton: Transportation Research Board, 2003.
5. ACI 440.1R-06 Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. (Reported by ACI Committee 440).
6. Building Research Centre, Royal Scientific Society, Amman, Jordan. 2 - Centre for Cement and Concrete, Department of Civil and Structural Engineering, University of Sheffield, United Kingdom.
7. Calibration of flexural design of concrete members reinforced with frp bars. A Thesis, Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering in The Department of Civil and Environmental Engineering.
8. Morgunov M. V. Izgibaemye betonnye jelementy konstrukcij armirovannye kompozitnoj armaturoj. Defekty zdanij i sooruzhenij. Usilenie stroitel'nyh konstrukcij. Sbornik nauchnyh statej XXI nauchno-metodicheskoj konferencii. Saint-Petersburg, 2017, pp. 315-318.
9. Bondarenko V.M., Kolchunov V.I. Raschetnye modeli silovogo soprotivlenija zhelezobetona. Moscow, ASV Publ., 2004, 472 p.
10. Kolchunov V.I., Jakovenko I.A., Kljueva N.V. Metod fizicheskih modelej soprotivlenija zhelezobetona. Promyshlennoe i grazhdanskoe stroitel'stvo, 2013, no. 12, pp. 51-55.
11. Tamrazjan A.G. K teorii rascheta po predel'nym sostojanijam na osnove reologicheskoj mehaniki zhelezobetona. Beton i zhelezobeton, 1999, no. 3.
12. Betonnye i zhelezobetonnye konstrukcii. Osnovnye polozhenija. Aktualizi-rovannaja redakcija SNiP 52-01-2003:SP 63.13330.2012. Data vvedenija 2015-01-01. Moscow, 2012, 158 p.
13. Konstrukcii betonnye, armirovannye polimernoj kompozitnoj armaturoj. Pravila proek-tirovanija. Svod pravil: SP 295.1325800.2017. TK 465 "Stroitel'-stvo". Vved. 2017-08-21. Moscow, 2017.
14. Kurochkina E.I., Radchenko A.N., Morgunov M.V. Deformativnost' izgibaemyh betonnyh jelementov, armiro-vannyh kompozitnoj armaturoj. Pokolenie budushhego: vzgljad molodyh uchenyh. Sbornik nauchnyh statej 5-j mezhdunarodnoj nauchnoj konferencii. Kursk, 2016, vol. 3, pp. 48-53.
15. Kodysh Je.N., Nikitin I.K., Trekin N.N. Raschet zhelezobetonnyh konstrukcij iz tjazhelogo betona po prochnosti, treshhinostojkosti i deformacijam. Moscow, ASV Publ., 2010, 352 p.
Review
For citations:
Morgunov М.V. Calculation of the Cracking Moment of a Flexible Concrete Element Reinforced with Fiberglass Fitting. Proceedings of the Southwest State University. 2019;23(1):64-73. (In Russ.) https://doi.org/10.21869/2223-1560-2019-23-1-64-73