Preview

Proceedings of the Southwest State University

Advanced search

Dynamic Management of Additive Shaping Process with the Use of 5-Coordinate Processing Equipment

https://doi.org/10.21869/2223-1560-2019-23-1-8-20

Abstract

Purpose of research. The study is about  accuracy of surface layer formation of mechanical engineering products by additive method. Advantages and disadvantages analysis of layer-by-layer synthesis technologies of products was done. It was identified that accuracy characteristics of surface layer under additive shaping significantly differ from accuracy characteristics of products' surface layer otained by traditional methods.  

Methods. Surfaces shaping of complex details by additive methods is characterized by high static values of processing error. Processing error is a shaping error (approximatio). Analysis of Russian and foreign literature was done. It was offered to carry out dynamic spatial orientation of a final element of a form-building system of the additive equipment. It was offered for increase in accuracy characteristics of products' received by additive methods. It was offered to use 5-coordinate processing equipment for spatial orientation management of a final element of a form-building system. Calculation method of operated parameters of 5-coordinate processing equipment was developed. Spatial orientation of a final element of a shaping system will be at these parameters. The orientation will be according to normals in a point of nominal surface of a shaping detail..  

Results. Operated parameters determination of 5-coordinate processing equipment when shaping a hemispherical surface was done by additive methods.  Graphic dependences are results of mathematical modeling. They reflect the size of tilt angles of 5-coordinate processing equipment desktop. Platform turn with a detail at hemispherical surface shaping of a detail by additive methods was also reflected.  

Conclusion. The offered technique allows carrying out dynamic spatial orientation of a final element of a shaping system of additive equipment. This can reduce shaping error (approximation) of figurine details' surfaces in the process of their shaping by additive methods.

About the Authors

A. N. Grechukhin
Southwest State University
Russian Federation

Aleksandr N. Grechukhin, Candidate of Engineering Sciences, Associate Professor

94, 50 Let Oktyabrya str., Kursk, 305040



V. V. Kuts
Southwest State University
Russian Federation

Vadim V. Kuts, Doctor of Engineering Sciences, Associate Professor

94, 50 Let Oktyabrya str., Kursk, 305040



M. S. Razumov
Southwest State University
Russian Federation

Mikhail S. Razumov, Candidate of Engineering Sciences, Associate Professor

94, 50 Let Oktyabrya str., Kursk, 305040



I. V. Vanin
Southwest State University
Russian Federation

Ivan V. Vanin, Post-Graduate Student, Department of engineering technologies and 

94, 50 Let Oktyabrya str., Kursk, 305040



References

1. Burns M. Automated Fabrication: Improving Productivity in Manufacturing. Englewood Cliffs, N.J., USA: PTR Prentice Hall, 1993, 369 pp.

2. Saprykin A.A. Povyshenie proizvoditel'nosti processa selektivnogo lazernogo spekanija pri izgotovlenii prototipov. Diss. kand. tehn. nauk. Jurga, Tomskij politehnicheskij universitet Publ., 2006.

3. Pronikov A.S., Aver'janov O.I., Apollonov Ju.S. i dr. Proektirovanie metallorezhushhih stankov i stanochnyh sistem. Spravochnik-uchebnik. Vol. 1. Proektirovanie stankov; ed. by Pronikov A.S. Moscow, MGTU im. N.Je.Baumana; Mashinostroenie Publ., 1994, 444 p.

4. Kuts V.V., Razumov M.S., Grechukhin A.N., Bychkova N.A. Improving the quality of additive methods for forming the surfaces of odd-shaped parts with the application of parallel kinematics mechanisms. International Journal of Applied Engineering Research, 2016, vol. 11, no. 24, pp. 11832-11835.

5. Chervjakov L.M., Bychkova N.A., Eliseeva N.V. eds. Transfer additivnyh tehnologij: promyshlennost' Kurskoj oblasti. Kursk, 2016, 168 p.

6. Dobroskok V.L., Abdurajimov L.N., Chernyshov S.I. Racional'naja orientacija izdelij pri ih poslojnom formo-obrazovanii na baze ishodnoj trianguljacionnoj 3d modeli. Uchenye zapiski Krymskogo inzhenerno-pedagogicheskogo universiteta, 2010, no. 24, pp. 13-21.

7. Singhal S. K., Pandey A. P., Pandey P. M., Nagpal A. K. Optimum part deposition orientation in stereolithography. Computer-Aided Design & Applications, 2005, vol. 2, no. 1–4, pp. 319–328.

8. Hong S. Byun, Kwan H. Lee Determination of optimal build direction in rapid prototyping with variable slicing. Int. J. Adv. Manuf. Technol, 2006, no. 28, pp. 307–313.

9. Hong S. Byun, Kwan H. Lee Optimal part orientation of rapid prototyping using a genetic algorithm. Computers & Industrial Engineering, 2004, pp. 426–431.

10. Hur J., Lee K. The development of a CAD environment to determine the preferred build-up direction for layered manufacturing. Int. J. Adv. Manuf. Technol, 1998, no. 14, pp. 247–254.

11. Kim J. Y., Lee K., Park J.C. Kim J. Y. C. Determination of optimal part orientation in stereolithographic rapid prototyping. Technical Report, Department of Mechanical Design and Production Engineering. Seoul, Seoul National University Publ., 1994.

12. Chou S. Y., Chent L. L., Gemmill D. Determining fabrication orientations for rapid prototyping with stereo-lithography apparatus. Computer-Aided Design, 1997, vol. 29, no. 1, pp. 53– 62.

13. Massod S. H., Rattanawong W., Iovenitti P. A generic algorithm for part orientation system for complex parts in rapid prototyping. J. Mater. Process. Technol, 2003, vol. 139, no. 1–3, pp. 110–116.

14. Masood S. H., Rattanawong W. A generic part orientation system based on volumetric error in rapid prototyping. Int. J. Adv. Manuf. Technol, 2002, no. 19, pp. 209–216.

15. Egorov I. N. Pozicionno-silovoe upravlenie robototehnicheskimi i mehatronnymi ustrojstvami. Vladimir, 2010.

16. Lashnev S.I., Borisov A.N., Emel'janov S.G. Geometricheskaja teorija formiro-vanija poverhnostej rezhushhimi instrumentami. Kursk, 1997, 391 p.

17. Emel'janov S.G. Razrabotka teorii, metodov i sredstv formirovanija poverhnostej sbornymi metallorezhushhimi instrumentami na osnove sistemnogo modelirovanija processa ih proektirovanija. Diss. d-ra tekhn. nauk. Moscow, 2001, 407 p.

18. Kuc V.V. Metodologija predproektnyh issledovanij specializirovannyh metallorezhushhih sistem. Diss. d-ra tekhn. nauk. Kursk, 2012, 366 p.

19. Kuc V.V., Ponomarev V.V. Postroenie modeli formoobrazovanija dlinnyh valov s RK - profilem sbornoj diskovoj frezoj. Fundamental'nye i prikladnye problemy tehniki i tehnologii, 2017, no. 2 (322), pp. 110-115.

20. Grechishnikov V.A., Kuc V.V., Razumov M.S. Opredelenie pogreshnosti formy detali pri formoobra-zovanii planetarnym mehanizmom metodami geometricheskoj teorii rezanija. STIN, 2017, no. 4, pp. 24-26.

21. Grechishnikov V.A., Romanov V.B., Pivkin P.M., Kuts V.V., Razumov M.S., Gre-chukhin A.N., Yurasov S.Y. Errors in shaping by a planetary mechanism. Russian Engineering Research, 2017, vol. 37, no. 9, pp. 824-826.

22. Vysokotochnyj promyshlennyj 6-i koordinatnyj robot. URL: //video.phim22.com/n535u234a405i3w5m5b3x5.html (data obrashhenija: 20.05.2018).

23. Grechuhin A.N., Kuc V.V., Razumov M.S., Trojan A.A. Povyshenie tochnosti additivnyh metodov formoobrazovanija. Innovacii, kachestvo i servis v tehnike i tehnologijah. Materialy mezhdunarodnoj nauchno-prakticheskoj konferencii. Kursk, 2018, pp. 128-131.

24. Grechuhin A.N., Kuc V.V., Razumov M.S. Upravlenie prostranstvennoj orientaciej uzlov robota v processe additivnogo formoobrazovanija izdelij. Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta, 2018, vol. 14, no. 4, pp. 122-129.

25. Grechuhin A.N., Kuc V.V., Razumov M.S. Jeksperimental'noe opredelenie parametrov poperechnogo sechenija edinichnogo sloja pri additivnom formoobrazovanii izdelij. Izvestija Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki, 2018, no. 10, pp. 264-270.

26. Grechukhin A.N., Anikutin I.S., Byshkin A.S. Management of space orientation of the end effector of generation of geometry system fiveaxis manufacturing machinery for ad-ditive generation of geometry. MATEC Web of Conferences.Volume 226, 7 November 2018, Nomer stat'i 0100214th International Scientific-Technical Conference "Dynamic of Technical Systems", DTS 2018; Don State Technical UniversityRostov-on-Don; Russian Federation; 12 September 2018 do 14 September 2018; Kod 141842.

27. Grechukhin A.N., Kuts V.V., Razumov M.S. Ways to reduce the error of additive methods of forming. MATEC Web of Conferences. Volume 226, 7 November 2018, Nomer stat'i 0100214th International Scientific-Technical Conference "Dynamic of Technical Systems", DTS 2018; Don State Technical University Rostov-on-Don; Russian Federation;September 2018 do 14 September 2018; Kod 141842.

28. Grechukhin A.N., Kudelina D.V., Razumov M.S. Development of informationanalytical system for technological requests monitoring, taking intoaccount regional specifics. International Conference on Actual Issues of Mechanical Engineering, vol. 157, pp. 198-202.


Review

For citations:


Grechukhin A.N., Kuts V.V., Razumov M.S., Vanin I.V. Dynamic Management of Additive Shaping Process with the Use of 5-Coordinate Processing Equipment. Proceedings of the Southwest State University. 2019;23(1):8-20. (In Russ.) https://doi.org/10.21869/2223-1560-2019-23-1-8-20

Views: 555


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)