COMPUTER MODELING OF SECTORAL ECONOMIC DYNAMICS
https://doi.org/10.21869/2223-1560-2018-22-5-96-108
Abstract
The article reveals the questions of mathematical formalization and algorithmic implementation of economic dynamics. To develop a computer model of sectoral development of the Russian economy, an agent-based approach was chosen, allowing to evaluate the result of control actions as a set of reactions to them of individuals and organizations.
At present, in the practice of managing social and economic systems of various levels, new methods are needed to assess the impact of monetary, investment, tax and social policies on social stability and economic security of the country. The diversity and stochastic nature of the factors influencing the sectoral development of the Russian economy necessitated an interdisciplinary study combining agent-based simulation modeling, socio-economic analysis, methods of artificial intelligence and cognitive psychology. In the context of developing a computer model of the Russian economy, the aggregate of changes in final, intermediate and investment demand in the economy and the market response in the form of changes in the output of individual organizations, increasing or decreasing the need for personnel, financial resources and equipment are considered as mechanisms for implementing the processes of economic dynamics.
Manageable parameters of the computer model are measures for the implementation of sectoral and regional development programs, introduction of tax incentives for developing industries, etc. The model provides assessment of the impact of managerial decisions on the economic system; in particular, when analyzing various variants of sectoral programs, it is possible to compare their influence on the structure of exports - imports and assess the import-substituting effect. The proposed approach has significant differences from the currently used mathematical and software models of the economy and provides the ability to predict non-equilibrium economic systems in the long term.
About the Authors
A. L. MashkovaRussian Federation
Candidate of Engineering Science, Senior Researcher
117418,Moscow,Nakhimov Avenue, 47
O. A. Savina
Russian Federation
Doctor of Economic Sciences, Professor
302026,Orel, Komsomolskaya Str., 94
A. V. Mamatov
Russian Federation
Belgorod State University
Belgorod,308015,Pobedy Str., 85
E. V. Novikova
Russian Federation
Post-Graduate Student
302026,Orel, Komsomolskaya Str., 94
References
1. Barros J. Exploring Urban Dynam-ics in Latin American Cities Using an Agent-Based Simulation Approach. In: Heppenstall A., Crooks A., See L., Batty M. (eds.) Agent-Based Models of Geographical Systems, 2012, pp. 571–589. Springer, Dordrecht.
2. Bonabeau E. Agent-based modeling: Methods and techniques for simulating human systems.Proceedings of the National Academy of Sciences of the United States of America, 2002,no. 99 (suppl 3), pp.280-7287.
3. Epstein J. M., Axtell R. Growing artificial societies: Social science from the bottom up. 1996. Brookings Institution Press, Washington, DC.
4. Holland J.H., Miller J.H. Artificial Adaptive Agents in Economic Theory. American Economic Review, Papers and Proceedings, 1991,no. 81, pp.365–370.
5. Macy M., Willer R. From factors to actors: Computational Sociology and Agent-Based Modeling. Annual Review of Sociolo-gy, 2002,no. 28, pp. 143-166.
6. Tesfatsion L. Agent-Based Computa-tional Economics: Growing Economies from the Bottom Up.Artificial Life, 2002,no. 8(1),pр. 55-82.
7. Gosudarstvennaya informacionnaya sistema promyshlennosti (oficial'nyj sajt).URL:https://gisp.gov.ru/. Data obrash-cheniya 15.08.2018.
8. Ivanov D. V. Algoritmizaciya procedur prinyatiya resheniya dlya sociotekhnicheskih ob"ektov na osnove teoretikoigrovyh metodov i mul'tiagentnyh tekhnologij v usloviyah riska.Izvestija Jugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, informatika, vychislitel'naya tekh-nika. Medicinskoe priborostroenie, 2016,no.4(21),pp. 11-18.
9. Mashkova A.L. Intellektual'nyj agent v social'noj srede: nechetkie ocenki i pravila prinyatiya reshenij.Izvestija Jugo-Zapad-nogo gosudarstvennogo universiteta. Seriya: Upravlenie, informatika, vychislitel'naya tekhnika. Medicinskoe priborostroenie, 2014,no.№3,pp. 12-19.
10. Mashkova A.L. Prognozirovanie dolgosrochnogo razvitiya makroehkonomicheskih sistem na baze agent-orientirovannyh modelej.Gosudarstvennoe upravlenie. Elektronnyj vestnik, 2016,no. 57,pp.49-68.
11. Mashkova A.L. Struktura i matematicheskoe obespechenie programmnogo modulya «Ekonomika i obrazovanie» agent-noj modeli ehksperimental'noj ehkonomiki.Vestnik Bryanskogo gosudarstvennogo tekhnicheskogo universiteta, 2015,no. 4(48),pp. 148-154.
12. Mashkova A.L., Savina O.A. Upravlenie finansovymi potokami agentov-predpriyatij v modeli ehksperimental'noj ehkonomiki. Upravlencheskij uchet, 2015,no. 12,pp. 89-98.
13. Ministerstvo finansov Rossijskoj Federacii (oficial'nyj sajt).URL: http:// www.minfin.ru/ Data obrashcheniya 18.09.2018.
14. Ministerstvo ehkonomicheskogo razvitiya Rossijskoj Federacii (oficial'nyj sajt). URL: https://minobrnauki.rf. Data ob-rashcheniya 14.08.2018.
15. Novikova E.V., Mashkova A.L. Sozdanie pervonachal'nogo pokoleniya agentov v komp'yuternoj modeli otraslevogo razvitiya ehkonomiki Rossii. Informacion-nye tekhnologii v nauke, obrazovanii i proizvodstve. Sbornik trudov VII Mezhdu-narodnoi nauchno-tekhnicheskaoi konferen-cii.Minsk, 2015, pp. 313-318.
16. Sovremennyj ehkonomicheskij slovar', ed. by RajzbergB.A., LozovskijL.Sh., StarodubskayaE.B.,Moscow, 2002, 480 p.
17. Federal'naya sluzhba gosudarstven-noj statistiki (oficial'nyj sajt). URL: http://www.gks.ru/. Data obrashcheniya 26.06.2018.
18. Central'nyj bank Rossijskoj Federacii (oficial'nyj sajt). URL: http://www.cbr.ru//. Dataobrashcheniya 20.09.2018.
Review
For citations:
Mashkova A.L., Savina O.A., Mamatov A.V., Novikova E.V. COMPUTER MODELING OF SECTORAL ECONOMIC DYNAMICS. Proceedings of the Southwest State University. 2018;22(5):96-108. (In Russ.) https://doi.org/10.21869/2223-1560-2018-22-5-96-108