Preview

Proceedings of the Southwest State University

Advanced search

ANALYSIS OF THE COMPUTATIONAL COMPLEXITY OF THE METHOD OF ITERATIVE DIMENSIONAL-LINEAR GENERATION OF THE TRAJECTORY OF MOTION OF THE THREE-LINE ANTHROPOMORPHIC MANIPULATOR IN THE VOLUME SPACE WITH OBSTRUCTION

https://doi.org/10.21869/2223-1560-2018-22-3-13-28

Abstract

Energy efficiency is an actual problem of the present, including in the field of robotics. Existing methods for planning the trajectory of motion of manipulators with excessive mobility face a number of problems, one of which is the impossibility of working in real time mode due to the high complexity of the scheduling algorithm. Moreover, the existing algorithms that work in real time are significantly inferior to the accuracy of the target operations. Therefore, earlier, in the author's articles, an iterative method of piecewise linear generation of the manipulator's trajectory was developed. In this paper, we analyze the computational complexity of the numerical method of iterative piecewise linear generation of the trajectory of a three-link anthropomorphic manipulator with 7 degrees of mobility in a volume space with an obstacle, an approximated hypersphere, in real time. A short description of the proposed method of planning the trajectory of motion is given. To move between the waypoints, the Denavite-Hartenberg representation used, with the formulation and solution of the problem of nonlinear optimization with the objective function of minimizing energy consumption when the manipulator moved to the target point. The initial generalized algorithm of the path planning method described. The number of operations that must performed in the process of execution of a recursive algorithm is considered. Parallelizing the branching recursive algorithm allows you to reduce the execution time to the time of executing a non-branching recursive algorithm with the same computational complexity and depth. A formula developed that allows you to select the values of variable parameters of the algorithm based on the available computational power and the allowable calculation time, and to determine the requirements for the manipulator computer system at the development stage.

About the Author

V. O. Antonov
Training at the Institute of Information Technologies and Telecommunications of NCFU
Russian Federation


References

1. Погорелов А. Д. Обзор алгоритмов планирования траектории движения манипуляторов // Молодежный научно-технический вестник. 2016. №. 8. С. 2-2.

2. Kamilyanov A. R. Planning of the trajectories of the movement of the multi-link manipulator in a complex three-dimensional working space on the basis of the evolutionary methods. Ph. D. Tesis. Ufa, 2007. 108 p.

3. Lin H. I. A fast and unified method to find a minimum-jerk robot joint trajectory using particle swarm optimization. Journal of Intelligent and Robotic Systems: Theory and Applications, 2014, vol. 75, no. 3-4, pp. 379-392.

4. Qi R., Zhou W., Wang T. An obstacle avoidance trajectory planning scheme for space manipulators based on genetic algorithm. Jiqiren/Robot, 2014, vol. 36, no. 3, pp. 263-270.

5. Xidias E. K. Time-optimal trajectory planning for hyper-redundant manipulators in 3D workspaces. Robotics and computer-integrated manufacturing, 2018, no. 50, pp. 286-298.

6. Menon M. S., Ravi V. C., Ghosal A. Trajectory Planning and Obstacle Avoidance for Hyper-Redundant Serial Robots. Journal of mechanisms and robotics-transactions of the ASME, 2017, vol. 9, no. 4, pp. 1-12.

7. Abu-Dakka F. J., Valero F. J., Suner J. L., Mata V. A direct approach to solving trajectory planning problems using genetic algorithms with dynamics in complex environments. Robotica, 2015, vol. 33, no. 3, pp. 669-683.

8. Liu W., Chen D., Zhang L. Trajectory generation and adjustment method for robot manipulators in human-robot collaboration. Jiqiren Robot, 2016, vol. 38, no. 4, pp. 504-512.

9. Ren Z. W., Zhu Q. G., Xiong, R. Trajectory planning of 7-DOF humanoid manipulator under rapid and continuous reaction and obstacle avoidance environment. Zidonghua Xuebao/Acta Automatica Sinica, 2015, vol. 41, no. 6, pp. 1131-1144.

10. Howard T., Pivtoraiko M., Knepper R. A., Kelly A. Model-predictive motion planning. IEEE Robotics and Automation Magazine, 2014, vol. 21, no. 1, pp. 64-73.

11. Chen Y. J., Ju M. Y., Hwang K. S. A virtual torque-based approach to kinematic control of redundant manipulators. IEEE Transactions on Industrial Electronics, 2017, vol. 64, no. 2, pp. 1728-1736.

12. Pham C. D., Coutinho F., Lizarralde F., Hsu L., From P. J. An analytical approach to operational space control of robotic manipulators with kinematic constraints. IFAC Proceedings Volumes (IFAC-PapersOnline), 2014, vol. 19, pp. 8509-8515.

13. Simba K. R., Uchiyama N., Aldibaja M., Sano S. Vision-based smooth obstacle avoidance motion trajectory generation for autonomous mobile robots using Bézier curves. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, vol. 231, no. 3, pp. 541-554.

14. Метод планирования траектории движения точки в пространстве с препятствием на основе итеративной кусочно-линейной аппроксимации / В.О. Антонов, М.М. Гурчинский, В. И. Петренко, Ф. Б. Те-буева // Системы управления, связи и безопасности. 2018. № 1. С. 168-182. URL: http://sccs.intelgr.com/archive/2018-01/09-Antonov.pdf

15. Метод планирования оптимальной траектории движения трехзвенного манипулятора в рабочей зоне с препятствием / В.И. Петренко, Ф.Б. Тебуева, В.О. Антонов, М.М. Гурчинский // Вестник Дагестанского государственного технического университета. 2018. №1. Т. 45. С. 68-87.

16. Кожевников М.М., Пашкевич А.П., Чумаков О. А. Планирование траекторий промышленных роботов-манипуляторов на основе нейронных сетей // Доклады БГУИР. 2010. №4 (50). URL: https:// cyberleninka.ru/article/n/ planirova-nietre-ktoriy-promyshlennyh-robotov-ma-nipulyatorov-na-osnove-neyronnyh-setey (дата обращения: 21.04.2018).

17. Соловьев В. В., Шаповалов И. О., Шадрина В. В. Планирование траектории подвижного объекта с применением диаграммы Вороного // Известия ЮФУ. Технические науки. 2015. №2 (163). URL: https://cyberleninka.ru/ article/n/ pla-nirovanie-traektorii-podvizh-nogo-obekta-s-primeneniem-diagrammy-voronogo (дата обращения: 11.04.2018).

18. Интеллектуальное планирование траекторий подвижных объектов в средах с препятствиями / под ред. В.Х. Пшихопова. М.: ФИЗМАТЛИТ, 2015. 304 с.


Review

For citations:


Antonov V.O. ANALYSIS OF THE COMPUTATIONAL COMPLEXITY OF THE METHOD OF ITERATIVE DIMENSIONAL-LINEAR GENERATION OF THE TRAJECTORY OF MOTION OF THE THREE-LINE ANTHROPOMORPHIC MANIPULATOR IN THE VOLUME SPACE WITH OBSTRUCTION. Proceedings of the Southwest State University. 2018;22(3):13-28. (In Russ.) https://doi.org/10.21869/2223-1560-2018-22-3-13-28

Views: 558


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)