Preview

Proceedings of the Southwest State University

Advanced search

RANGES OF ADMISSIBLE VALUES OF GEOMETRIC PARAMETERS OF A WHEELED JUMPING ROBOT

https://doi.org/10.21869/2223-1560-2018-22-2-76-84

Abstract

The use of robots to perform tasks traditionally assigned to people leads to an improvement in the quality of their implementation, a reduction in the costs and risks associated with them. A typical example of this is the task of monitoring and examining hard-to-reach areas. The introduction of robots to solve such problems could bring a significant economic and social effect, allowing the automation of a number of complex, time-consuming and potentially dangerous tasks, such as the compilation and updating of maps and three-dimensional models of emergency sites, the collection of data on the state of the environment in areas, exposed to biological or radiation contamination, continuous monitoring of the state of the environment and sampling of air and soil. The paper considers one of the possible designs of such robots: a wheeled jumping robot, which consists of an acceleration module for jumping(used to for overcome obstacles), and a wheel platform, which allows the robot to use wheeled locomotion when moving over the surfaces with small irregularities. The advantages of such a combined system include higher maneuverability and higher speeds of movement, as well as a wider functionality in terms of the range of terrains suitable for movement. For this robot, a design scheme has been developed and two critical positions of the device are identified, which allows to formulate conditions that impose limitations on the geometric parameters of the body, the acceleration module and the wheels, and their mutual arrangement, in order to ensure operation of the robot in two modes: wheeled and jumping. The results of modeling are presented in the form of permissible ranges for the length and height of the body, as well as the maximum length of the acceleration module from the radius of the wheels and the location of their installation point, taking into account the capability of the acceleration module to do a complete rotation within the robot’s frame .

About the Authors

L. Yu. Vorochaeva
Southwest State University
Russian Federation


А. V. Malchikov
Southwest State University
Russian Federation


S. I. Savin
Southwest State University
Russian Federation


References

1. Мартыненко Ю.Г. Управление движением мобильных колёсных роботов // Фундаментальная и прикладная математика. 2005. Т. 11. № 8. С. 29-80.

2. Фан А.Т., Воротников С.А. Система управления легким разведывательным роботом // Вестник Московского гос. техн. ун-та им. Н.Э. Баумана. Серия Приборостроение. 2008. № 3. С. 38-45.

3. Шасси робототехнического комплекса мониторинга прибрежной зоны / В.В. Беляков, А.А. Куркин, Д.В. Зезюлин, В.С. Макаров // Материалы 87-й Международной научно-технической конф. "Эксплуатационная безопасность автотранспортных средств". Н. Новгород, 2014. С. 353-357.

4. Макаров В.С. Разработка научно обоснованных технических решений по созданию подвижных комплексов мониторинга береговых зон // Труды НГТУ им. Р.Е. Алексеева. 2017. № 3. С. 157-167.

5. Гаврилов А.Е., Голубев Д.В., Даншин А.С. Роботизированная транспортная платформа с шагающим ортогональным движителем // Известия ВолгГТУ. Серия «Актуальные проблемы управления, вычислительной техники и информатики в технических системах». 2013. № 24 (127). C. 15-22.

6. Робот для диагностики вредных примесей в воздухе / Е.В. Поезжаева, К.Н. Поликарпова, А.А. Новикова, В.А. Сайкинова // Известия института инженерной физики. 2016. Т. 4. № 42. С. 76-78.

7. Kalantari A., Spenko M. Modeling and Performance Assessment of the HyTAQ, a Hybrid Terrestrial/Aerial Quadrotor // IEEE Transactions on Robotics. Vol. 30. № 5. P. 1278 - 1285.

8. Kovač M., Hraiz W, Fauria O., Zufferey J.-C., Floreano D. The EPFL jumpglider: A hybrid jumping and gliding robot with rigid or folding wings //Proc. IEEE Intern. Conf. Robotics and Biomimetics (ROBIO). Karon Beach, Phuket, Thailand, 2011.

9. Woodward M. A., Sitti M. MultiMo-Bat: A biologically inspired integrated jumping-gliding robot // Intern. J. of Robotics Research. 2014. Vol. 33. № 12. P. 1511-1529.

10. Salton J. R. Urban Hopper // SPIE Defense, Security and Sensing. Orlando, Florida, USA., 2010.

11. Яцун С.Ф., Волкова Л.Ю. Управление высотой и длиной прыжка робота путем его позиционирования и разгона // Известия Юго-Западного государственного университета. Серия: Техника и технологии. 2012. № 2. Ч. 1 С. 210-213.

12. Yatsun S.F., Volkova L.Yu. Simulation of Motion of a Multilink Jumping Robot and Investigation of Its Characteristics // J. of Computer and Systems Sciences International. 2013. Vol. 52. №. 4. Р. 637-649.

13. Яцун С.Ф., Волкова Л.Ю., Ворочаев А.В. Исследование режимов разгона четырехзвенного прыгающего аппарата // Известия Волгоградского государственного технического университета. 2013. № 24 (127). С. 86-92.


Review

For citations:


Vorochaeva L.Yu., Malchikov А.V., Savin S.I. RANGES OF ADMISSIBLE VALUES OF GEOMETRIC PARAMETERS OF A WHEELED JUMPING ROBOT. Proceedings of the Southwest State University. 2018;22(2):76-84. (In Russ.) https://doi.org/10.21869/2223-1560-2018-22-2-76-84

Views: 526


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)