Preview

Proceedings of the Southwest State University

Advanced search

EXPERIMENTAL INVESTIGATIONS OF THE LOSSES OF PRESTRESSING IN FINE REINFORCED CONCRETE ELEMENTS

https://doi.org/10.21869/2223-1560-2018-22-1-112-117

Abstract

The article deals with late losses of prestressing of reinforcement due to shrinkage and creep in fine reinforced concrete structures. Creep deformations can several times exceed the elastic straincaused by load. The most common in practice caseof the development of concrete creep is slowly decreased creeping with timewith a rather high initial rate of the development in the first hours after loading. It is typical for stresses that do not exceed the long-term resistance of concrete. Experimental study of deformation of shrinkage and creep of fine-grained concrete allows us to compare the loss of prestressing due to concrete shrinkage and creep. Usually there is an aggregate effect of these factors, which significantly complicates the study of the processes occurring in concrete during long-term exposures. Basically, the results obtained during testing of concrete prisms are used to compare stress-related properties of concrete, but this is not enough to study the loss of prestressing due to concrete shrinkage and creep and testing should be carried out on elements reinforced with prestressed reinforcement to take into account changes in prestresses and redistribution of stresses on the height of the cross section (depth) of the element with a prolonged action of the prestressing force. The results of experimental studies of rectangular reinforced concrete beams at loadcase of different ages of t = 14, 28, 280 and 320 days are analyzed. The losses from rapid creep, shrinkage losses, total losses from shrinkage and creep are considered. The experimental data are presented in the form of graphs and tables. There was performed comparison of the experimental data with the calculated ones determined according to the current standards, and for shrinkage according to the method proposed by I.I. Ulitsky as well.

About the Authors

S. G. Parfenov
Bryansk State Engineering-Technological University
Russian Federation


M. V. Morgunov
Bryansk State Engineering-Technological University
Russian Federation


References

1. Арутюнян Н.Х., Манжиров А.В. Контактные задачи теории ползучести. Ереван: НАН РА, 1999. 318 с.

2. Бондаренко В.М., Колчунов В.И. Расчетные модели силового сопротивления железобетона. М.: АСВ, 2004. 472 с.

3. Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003:СП 63.13330.2012.-Дата введения 2015-01-01.М.: ООО «Аналитик», 2012. 158 с.

4. ГОСТ 24544-81*. Бетоны. Методы определения деформаций усадки и ползучести. Введ. 1982-01-01. М.: Изд-во стандартов, 1982.

5. Галустов К. З. Нелинейная теория ползучести бетона и расчет железобетонных конструкций. М.: Физматгиз, 2006.

6. Есаян С.Г. Реологическое моделирование вязкоупругих, упругопластических и вязкоупруго-пластических сред. Ереван: Чартарагет. 2009. 368 с.

7. Лившиц Я.Д. Расчет железобетонных конструкций с учетом влияния усадки и ползучести бетона: учеб. пособие для строит. спец. вузов. 2-е изд., перераб. и доп. Киев : Вища шк., 1976. 280 с.

8. Парфенов С.Г., Мощенков В.Е. Экспериментальные исследования деформации ползучести и усадки мелкозернистого бетона // Известия Юго-Западного государственного университета. 2017. Т. 21, № 4(73). С. 13-20.

9. Тамразян А.Г., Есаян С.Г. Механика ползучести бетона: монография. М.: МГСУ, 2013. 524 с.

10. Тамразян А.Г. К теории расчета по предельным состояниям на основе реологической механики железобетона // Бетон и железобетон. 1999. №3.

11. Улицкий И.И., Чжан-Чжун-Яо, Голышев А.Б. Расчет железобетонных конструкций с учетом длительных процессов. Киев: Госстройиздат УССР, 1960. 495 с.

12. Хасин В.Л. К расчету железобетонных элементов с учетом нелинейной ползучести бетона // Пути повышения производительности труда, сокращения сроков проектирования и строительства транспортных сооружений: сб. науч. тр. М.: ЩИИС, 1986.

13. Li Xian-Fang, Fan Tian-You. Transient analysis of a piezoelectric strip with a permeable crack under anti-plane impact loads. International Journal of Engineering Science, Jan. 2002. 40, рp. 131-143.

14. Javier Aviles, Martha S. Sanchez-Sesma, Francisco J. Effects of wave passage on the relevant dynamic properties of structures with flexible foundation. Earthquake Engineering & Stuctural Dynamics, Jan. 2002, 31, 1, pр.139-159

15. Hidalgo P. A., Jordan R. M., Martinez M. P. An analytical model to predict the inelastic behaviour of shear-wall, reinforced concrete structures. Engineering Structures, Jan. 2002, 24, 1, рp. 85-98.


Review

For citations:


Parfenov S.G., Morgunov M.V. EXPERIMENTAL INVESTIGATIONS OF THE LOSSES OF PRESTRESSING IN FINE REINFORCED CONCRETE ELEMENTS. Proceedings of the Southwest State University. 2018;22(1):112-117. (In Russ.) https://doi.org/10.21869/2223-1560-2018-22-1-112-117

Views: 486


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)