Preview

Proceedings of the Southwest State University

Advanced search

SEGMENTATION OF IMAGES OF EYE GROUND BLOOD VESSELS INVOLVING APPLICATION OF FUZZY IMAGING

https://doi.org/10.21869/2223-1560-2018-22-1-6-17

Abstract

Segmentation of images is an important task while processing images. Among the most widespread methods are methods based on pixel clustering, histogram methods, morphological methods, watershed segmentation, multiscale segmentation, and others. A promising trend in image processing is the use of fuzzy logic methods and the fuzzy set theory. Their application makes it possible to improve the quality of processing by providing information in a fuzzy form. The article proposes a new method for images segmentation involving boundaries detection based on the fuzzy representation of the image and fuzzy pixels. The membership functions are proposed for describing fuzzy pixels, and the requirements for their form and type are provided. The most suitable membership functions for fuzzy imaging are the s-function and the π-function. A description of a new method for boundaries detection based on the Sobel operator and the developed fuzzy type of image is described. In this case, standard calculations of the image brightness gradient are supplemented with their fuzzy versions which are then combined to obtain the final result. The experimental verification of the developed method is carried out using the example of eyeground images. In addition to the fuzzy detection of boundaries for the detection of blood vessels, the images were subjected to pre-processing (halftone imaging, mask matching, contrasting), morphological operators (thinning of boundaries, dilatation), and an algorithm for removing small details was applied. During testing, the developed algorithm showed acceptable results in terms of segmentation of blood vessels. In the future, a fuzzy image model can be extended to use fuzzy features of the second and higher types

About the Authors

E. V. Pugin
MI VSU named after Alexader Grigoryevich and Nickolay Grigoryevich Stoletovs
Russian Federation


A. L. Zhiznyakov
MI VSU named after Alexader Grigoryevich and Nickolay Grigoryevich Stoletovs
Russian Federation


D. V. Titov
Southwest State University
Russian Federation


References

1. Macqueen J. Some methods for classification and analysis ofmultivariate observations. In 5-th Berkeley Symposium on Mathematical Statistics and Probability. 1967. С. 281-297.

2. Fuzzy c-means clustering with spatial information for image segmentation / K.-S. Chuang [et al.] // Computerized medical imaging and graphics. 2006. Т. 30, № 1. С. 9-15.

3. Ray S., Turi R. H. Determination of number of clusters in k-meansclustering and application in colour image segmentation // Proceedings of the 4th international conference on advances in pattern recognition and digital techniques. Calcutta, India, 1999. С. 137-143.

4. Bezdek J. C., Ehrlich R., Full W. FCM: The fuzzy c-means clusteringalgorithm // Computers & Geosciences. 1984. Т. 10, № 2/3. С. 191-03.

5. Tobias O. J., Seara R. Image segmentation by histogram thresholdingusing fuzzy sets // IEEE transactions on Image Processing. 2002. Т. 11, № 12. С. 1457-1465.

6. Ohlander R., Price K., Reddy D. R. Picture segmentation usinga recursive region splitting method // Computer Graphics and Image Processing. 1978. Т. 8, № 3. С. 313-333.

7. Contour detection and hierarchical image segmentation / P. Arbelaez [et al.] // IEEE transactions on pattern analysis and machine intelligence. 2011. Т. 33, № 5. С. 898-916.

8. Zhu S. C., Yuille A. Region competition: Unifying snakes, regiongrowing, and Bayes/MDL for multiband image segmentation // IEEE transactions on pattern analysis and machine intelligence. 1996. Т. 18, № 9. С. 884-900.

9. Soille P. Morphological image analysis: principles and applications. Springer Science & Business Media, 2013.

10. Bleau A., Leon L. J. Watershed-based segmentation and regionmerging // Computer Vision and Image Understanding. 2000. Т. 77, № 3. С. 317-370.

11. Жизняков А. Л., Гай В. Е. Сегментация изображений на базе использования адаптивной локальной области // Вестник компьютерных и информационных технологий. 2008. № 1. С. 16-21.

12. Жизняков А. Л., Гай В. Е. Адаптивный алгоритм сегментации изображений // Инфокоммуникационные технологии. 2008. Т. 6, № 4. С. 96-101.

13. Жизняков А. Л. Алгоритмы адаптивного многомасштабного преобразования изображений // Информационные технологии моделирования и управления. 2007. № 1. С. 63-70.

14. Privezentsev D. G., Zhiznyakov A. L. Use of characteristic image segments in tasks of digital image processing // 2015 International Conference ”Stability and Control Processes” in Memory of V.I. Zubov (SCP). Institute of Electrical, Electronics Engineers (IEEE), 10/2015.

15. Zhiznyakov A. L., Privezentsev D. G., Zakharov A. A. Using fractal features of digital images for the detection of surface defects // Pattern Recognition and Image Analysis. 2015. Jan. Vol. 25, no. 1. P. 122-131.

16. Zadeh L. A. Fuzzy sets // Information and Control. 1965. Vol. 8, no. 3. P. 338-353.

17. Fuzzy image segmentation based upon hierarchical clustering / D. Gómez [et al.] // Knowledge-Based Systems. 2015. Oct. Vol. 87. P. 26-37.

18. Fuzzy filters for image processing. Vol. 122 / M. Nachtegael [et al.]. Springer, 2013.

19. Huntsherger T., Jacobs C., Cannon R. Iterative fuzzy image segmentation // Pattern Recognition. 1985. Jan. Vol. 18, no. 2. P. 131-138.

20. Othman A. A., Tizhoosh H. R., Khalvati F. EFIS Evolving Fuzzy Image Segmentation // IEEE Transactions on Fuzzy Systems. 2014. Feb. Vol. 22, no. 1. P. 72-82.

21. Tolias Y., Panas S. Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions // IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans. 1998. May. Vol. 28, no. 3. P. 359-369.

22. An Improved Method for Edge Detection and Image Segmentation Using Fuzzy Cellular Automata / R. Shahverdi [et al.] // Cybernetics and Systems. 2016. Apr. Vol. 47, no. 3. P. 161-179.

23. Zhang D.-Q., Chen S.-C. A novel kernelized fuzzy C-means algorithm with application in medical image segmentation // Artificial Intelligence in Medicine. 2004. Sept. Vol. 32, no. 1. P. 37-50.

24. Pham D., Prince J. Adaptive fuzzy segmentation of magnetic resonance images // IEEE Transactions on Medical Imaging. 1999. Vol. 18, no. 9. P. 737-752.

25. Fuzzy Techniques in Image Processing / ed. by E. E. Kerre, M. Nachtegael. Physica-Verlag HD, 2000.

26. Yuksel M., Borlu M. Accurate Segmentation of Dermoscopic Images by Image Thresholding Based on Type-2 Fuzzy Logic // IEEE Transactions on Fuzzy Systems. 2009. Aug. Vol. 17, no. 4. Pp. 976-982.

27. A modified interval type-2 fuzzy C-means algorithm with applicationin MR image segmentation / C. Qiu [et al.] // Pattern Recognition Letters. 2013. Сент. Т. 34, № 12. С. 1329-1338.

28. Molodtsov D. Soft set theory-First results // Computers & Mathematics with Applications. 1999. Vol. 37, no. 4. P. 19-31.

29. Pawlak Z. Rough sets // International Journal of Computer and Information Sciences. 1982. Oct. Vol. 11, no. 5. P. 341-356.

30. Zuiderveld K. Contrast Limited Adaptive Histogram Equalization // Graphics Gems IV / ed. by P. S. Heckbert. - San Diego, CA, USA: Academic Press Professional, Inc., 1994. P. 474-485.

31. Canny J. A Computational Approach to Edge Detection // Pattern Analysis and Machine Intelligence, IEEE Transactions on. 1986. Nov. Vol. PAMI-8, no. 6. P. 679-698.

32. Otsu N. A threshold selection method from gray-level histograms // IEEE Trans. Sys., Man., Cyber. 1979. Vol. 9. P. 62-66.

33. Vincent L. Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms // IEEE transactions on image processing. 1993. Т. 2, № 2. С. 176-201.

34. A review on MR vascular image processing: skeleton versusnonskeleton approaches: part II. / J. S. Suri [et al.] // IEEE transactions on information technology in biomedicine: a publication of the IEEE Engineering in Medicine and Biology Society. 2002. Т. 6, № 4. С. 338-350.

35. Алгоритмы сегментации изображений, полученных по результатам аэрофотосъемки / C.Г. Емельянов, Ю.Д. Орлов, А.Я. Клочков, М.В. Акинин // Известия Юго-Западного государственного университета. 2014. № 6 (57). C. 47-52.

36. Завалишин С.С., Бехтин Ю.С. Алгоритм эквивалентных отрезков для параллельной маркировки связных компонент бинарного изображения // Известия Юго-Западного государственного университета. 2014. № 5 (56). C. 50-57.

37. Спектральные технологии морфологического описания сегментов в задачах классификации сложноструктурируемых изображений / Р.А. Томакова, В.В. Серебровский, Л.В. Шульга, А.А. Насер // Известия Юго-Западного государственного университета. 2012. № 1 (40). C. 22-28.


Review

For citations:


Pugin E.V., Zhiznyakov A.L., Titov D.V. SEGMENTATION OF IMAGES OF EYE GROUND BLOOD VESSELS INVOLVING APPLICATION OF FUZZY IMAGING. Proceedings of the Southwest State University. 2018;22(1):6-17. (In Russ.) https://doi.org/10.21869/2223-1560-2018-22-1-6-17

Views: 637


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)