Preview

Proceedings of the Southwest State University

Advanced search

DESIGN OF NEURO-FUZZY DECISION TREE

Abstract

To improve the classification accuracy of fuzzy decision trees is proposed, the procedure of adapting parameters using neural network learning. In direct cycle, the fuzzy decision trees are built based on the algorithm of fuzzy ID3 tags, in the loop feedback parameters of fuzzy decision trees are adapted based on the stochastic gradient algorithm by traversing back from leaf to root nodes. Using this strategy, a hierarchical structure of fuzzy decision trees remains fixed.

About the Author

T. V. Abramova
Magnitogorsk State Technical University
Russian Federation


References

1. Горбачев С.В., Сырямкин В.И., Койнов С.А. Интеллектуальная система стратегического бизнес-планирования с нечетко-множественной оценкой эффективности и рисков. - LAMBERT Academic Publishing, Saarbrucken, 2012. - 172 с.

2. Горбачев С.В., Сырямкин В.И., Рудаков И.Б. Распознавание сложнопостроенных залежей нефти, газа на основе нейро-нечетких портретов. - LAMBERT Academic Publishing, Saarbrucken, 2013. - 173 с.

3. Горбачев С.В., Сырямкин В.И. Нейро-нечеткие методы в интеллектуальных системах обработки и анализа многомерной информации. - Томск: Изд-во Томского государственного университета, 2014. - 510 с.

4. Горбачев С.В., Сырямкин В.И., Сырямкин М.В. Интеллектуальный Форсайт-прогноз научно-технологического развития государства. - LAMBERT Academic Publishing, Saarbrucken, 2012. - 132 с.

5. Janikow. Fuzzy Processing in Decision Trees // Proceedings of the Sixth International Symposium on AI. - 1993. Р. 360-367.


Review

For citations:


Abramova T.V. DESIGN OF NEURO-FUZZY DECISION TREE. Proceedings of the Southwest State University. 2016;(1):8-14. (In Russ.)

Views: 409


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)