Preview

Proceedings of the Southwest State University

Advanced search

SPECIFIC FEATURES OF SPS-SINTERING OF BORON CARBIDE POWDERS PRODUCED BY DIFFERENT METHODS

https://doi.org/10.21869/2223-1560-2017-21-3-41-58

Abstract

Mechanochemical and SHS methods are up-and-coming ways to produce finely dispersed boron carbide nano powder. With optimal process conditions the synthesized phases have ultra dispersed state with well-developed surfaces of the boundaries of grains and subgrains that have either a nano or microcrystalline structure, and that ensures its higher density after vibrocompaction treatment, which in its turn can result in a reduced burn-out rate and a slow-down absorption activity under the influence of neutron irradiation. The products of mechanochemical synthesis and SHS have specified composition and specific structural state and are related with fast solid-phase reactions. The presented research dealt with boron carbide powders that had been produced by mechanochemical or SHS methods, as well as by carbon char or amorphous boron reduction, or the reduction of boron carbide that had been produced by SPS sintering. The purpose of the research was to determine the most optimal SPS sintering modes and to investigate the structure and properties of the sintered boron carbide workpieces made from the powders produced by the above mentioned methods. Source materials for boron carbide synthesis by mechanochemical method or carbon reduction with subsequent crushing and grinding, as well as for SHS treatment were carbon char of PM-15 grade and amorphous boron of A grade taken in stoichiometric composition. SPS sintering of boron carbon powders produced as above mentioned took place at Spark Plasma Sintering (SPS) - Labox 650 plant in graphite dies of 15 mm in diameter in vacuum under 25… 50 MPa pressure. The study of В4С powder workpieces that had been produced by mechanical synthesis, SHS or carbon reduction or SPS sintering of carbon char and amorphous boron mixture, yielded the most efficient modes of SPS sintering for each powder under research. The highest relative density was observed with SPS sintering of В4С powders produced by mechanosynthesis or SHS.

About the Authors

J. V. Eremeeva
National Research Technological University MISIS
Russian Federation


O. V. Myakisheva
National Research Technological University MISIS
Russian Federation


V. S. Panov
National Research Technological University MISIS
Russian Federation


V. Y. Lopatin
National Research Technological University MISIS
Russian Federation


E. V. Ageev
Southwest State University
Russian Federation


A. V. Lizunov
OJSC ELEMASH
Russian Federation


A. A. Nepapushev
Scientific Research Centre "Structural Ceramic Nanomaterials"
Russian Federation


D. A. Sidorenko
NUTS SHS MISIS-ISMAN
Russian Federation


D. Yu. Mishunin
National Research Technological University MISIS
Russian Federation


E. V. Apostolova
National Research Technological University MISIS
Russian Federation


References

1. Sickafus Kurt E., Grimes Robin W., Valdez James A., Cleave Antony, Ming Tang, Ishimaru Manabu, Corish Siobhan M., Stanek Christopher R. & Uberuaga Blas P. Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides // Nature Materials. 2007. No. 6. P. 217 - 223.

2. Сравнительные характеристики поглощающих кластерных сборок ВВЭР-1000 и PWR / В.Д. Рисованый, Е.Е. Варлашова, С.Р. Фридман, В.Б. Пономаренко, А.В. Щеглов //Атомная энергия. 1998. Т. 84. Вып. 6. С. 508-513.

3. Munir, Z. A. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method / Z. A.Munir, U. Anselmi-Tamburini, and M. Ohyanagi // J. Mater. Sci. 2006. V. 41. P.763-777.

4. Chaim, R. Densification mechanisms in spark plasma sintering of nanocrystalline ceramics / R. Chaim // Mater. Sci Eng. A. 2007. V. 443. P. 25-32.

5. Zhang, L. M. Fabrication of B-C ceramics by reactive synthesis and densification using spark plasma sintering / L. M. Zhang, S. Zhang, Q. Shen, C. B. Wang, L. Li // Global Road map of Ceramics - ICC 2 Proceedings. Verona, 2008.

6. Nefedova, E. Research Hightem-perature Consolidation of Nanostructured Bimodal Materials / E. Nefedova, E. Aleksandrova, E. Grigoryeva, E. Olevsky // Physics Procedia. 2015. V. 72. P. 390-393.

7. Андриевский Р. А. Микро- и наноразмерный карбид бора: синтез, структура и свойства // Успехи химии. 2012. Т. 81(6). С. 549-559.

8. Moshtaghiouna B. M. Effect of spark plasma sintering parameters on microstructure and room-temperature hardness and toughness of fine-grained boron carbide (B4C) / B. M. Moshtaghi-ouna, F. L. Cumbrera-Hernándeza, D. Gó-mez-Garcíaa, S. de Bernardi-Martína, A. Domínguez-Rodrígue-za, A. Monshib, M. H. Abbasib // J. of the Eur. Cer. Soc. 2013. V. 33.- I 2. P. 361-369.

9. Fridman S.R., Risovany V.D.et al. Radiation stability of WWER-1000 CPS AR absorber element with boron carbide, VANT. 2001. No2. S: Physics of radiation damages and radiation science of materials. P.84-90.

10. Применение нанопорошков оксидов и их композиций в технологии керамики / Е.С. Лукин, Н.А. Попова, Л.Т. Пав-люкова, С. Н. Санникова // Конструкции из композиционных материалов. 2014. № 3. С. 28-32.

11. Moshtaghioun, B. M. High-temperature deformation of fully-dense finegrained boron carbide ceramics: Experimental facts and modeling / B. M. Moshtaghioun, D. Gómez García, A. Domínguez Rodríguez. // Materials & Design. 2015. V. 88. P. 287-293.

12. Халамейда С.В. Некоторые новые подходы при механохимическом синтезе нанодисперсного титаната бария // Nano-systems, Nanomaterials, Nanotechnologies. Киев, 2009. Т. 7. No 3. С.911-918.

13. Xue J., Wang J., Wan D. // J. Amer. Ceram. Soc. 2000.Vol. 83. No. 1. P. 232-234.

14. Lyashenko L. P., Shcherbakova L. G., Kolbanev I.V., Knerel’man E. I., Davydova G. I. Mechanism of Structure Formationin Samarium and Holmium Titanates Prepared from Mechanically Activated Oxides.//ISSN 0020-1685, Inorganic Materials. 2007. Vol. 43. No. 1. P. 46-54.

15. Lyashenko L.P., Shcherbakova L.G., I.V. Kolbanev, E.I. Knerel’man, G.I. Davydova, published in Neorganicheskie Materialy. 2007. Vol. 43. No. 1.

16. Спектры комбинационного рассеяния поликристаллических нано-трубок титаната висмута / А.С. Анохин, Н.В. Лянгузов, С.Б.Рошаль, Ю.И. Юзюк, Wen Wang // Физика твердого тела. 2011. Т.53, вып.9. С.1968-1772.

17. Синдо Д., Оикава Т. Аналитическая просвечивающая электронная микроскопия. М.:Техносфера, 2004. 256 с.

18. Свойства твердого сплава ВК6, полученного из СВС-порошка карбида вольфрама / В.С. Панов, Ж.В. Еремеева, Е.В. Агеев, Е.Л. Нарбаев, Ю.Ю. Капланский // Известия Юго-Западного государственного университета. 2015. Т. 1. № 3 (60). С. 32-35.


Review

For citations:


Eremeeva J.V., Myakisheva O.V., Panov V.S., Lopatin V.Y., Ageev E.V., Lizunov A.V., Nepapushev A.A., Sidorenko D.A., Mishunin D.Yu., Apostolova E.V. SPECIFIC FEATURES OF SPS-SINTERING OF BORON CARBIDE POWDERS PRODUCED BY DIFFERENT METHODS. Proceedings of the Southwest State University. 2017;21(3):41-58. (In Russ.) https://doi.org/10.21869/2223-1560-2017-21-3-41-58

Views: 878


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)