Preview

Proceedings of the Southwest State University

Advanced search

Interaction of cognitive and reactive agents in an intelligent computing system: principles of organization

https://doi.org/10.21869/2223-1560-2025-29-1-52-78

Abstract

Purpose of research. The problem statement is inspired, among other things, by the fact of the evolution the existing World Wide Web into the Semantic Web. The aim of this work is to develop a multi-agent environment with agents of different types: cognitive and deductive reactive. It is shown that the knowledge and beliefs storage of cognitive BDI agents (BDI is an abbreviation for Belief–Desire–Intention) in the form of facts of an extensional database can be used to obtain new knowledge and beliefs by deductive inference in the environment of an intensional database of agents possessing deductive presumptions.

Methods. The operation of an intelligent system is described by an incompletely defined conceptual graph and a system of production rules suitable for representing deductive presumptions of agents in a high-level declarativeimperative programming language. Reactive agents implement their rational behaviors based on deductive abilities, which are understood as the ability to build correct conclusions.

Results. The implementation of an intelligent agent-based system is proposed. At the conceptual level, the architecture of the intelligent agent-based system is proposed to be represented by three sublevels. The cognition of agents working at the first and second sublevels is associated with modalities. Based on the formulated interpretations at the third sublevel, reactive agents implement their rational behavior based on deductive abilities, which imply the ability to build correct conclusions.

Conclusion. It is shown that the software implementation of cognitive presumptions can be performed using conventional imperative programming languages and, possibly, data manipulation languages. The implementation of the functions of deductive reactive agents when performing operations with conceptual graphs is demonstrated using the example of filling in missing relations in a specific subject area.

About the Authors

N. S. Karamysheva
Penza State University
Russian Federation

40 Krasnaya str., Penza 440026


Competing Interests:

The Authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.



S. A. Zinkin
Penza State University
Russian Federation

40 Krasnaya str., Penza 440026


Competing Interests:

The Authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.



References

1. Karamysheva N. S., Milovanov A. S., Mitrokhin M. A., Zinkin S. A. On the Software Implementation of Cognitive Interoperable Agent-Based Systems. Izvestiya YugoZapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University. 2024; 28(1): 100-122 (In Russ.). https://doi.org/10.21869/2223-1560-2024-28-1-100-122.

2. Karamysheva N. S., Alexandrov V. S., Kiryutkin A.I., Zinkin S. A. Cognitive peering infrastructure for the organization teamwork on projects based on agile methodology. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University. 2024; 28(3): 131-163 (In Russ.). https://doi.org/10.21869/2223-1560-2024-28-3-131-163.

3. Maklakov A. G. General psychology. St. Petersburg: Piter Press; 2017. 582 p. (In Russ.).

4. Kulagina I. Yu., Kolyuckij V. N. Developmental psychology and age psychology: the full life cycle of human development. Moscow: Akademicheskij proekt; 2020. 420 p. (In Russ.).

5. Druzhinin V. N., ed. Psychology. St. Petersburg: Piter; 2009. 652 p. (In Russ.).

6. Kholodnaya M.A. Cognitive styles. On the nature of the individual mind. St. Petersburg: Piter; 2004. 384 p. (In Russ.).

7. Lobanov A.P. Psychology of intelligence and cognitive styles. Minsk: Agentstvo V. Grevtsova; 2008. 296 p. (In Russ.).

8. Makarenko S.I., Solovyova O.S. Basic provisions of the concept of semantic interoperability of network-centric systems. Zhurnal radioelektroniki = Journal of Radioelectronics. 2021. (4):24. (In Russ.). https://doi.org/10.30898/1684-1719.2021.4.10.

9. Makarenko S.I. Directory of scientific terms and notations. St. Petersburg: Naukoemkie tekhnologii; 2019. 254 p. (In Russ.).

10. Karamysheva N. S., Zinkin S. A. Interaction of cognitive and reactive agents in an intelligent computing system: operational semantics. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University. 2024; 28(4): 138153 (In Russ.). https://doi.org/10.21869/2223-1560-2024-28-4-138-153.

11. Pacuit E. Dynamic Epistemic Logic I: Modeling Knowledge and Belief. Philosophy Compass. 2013. 8(9): 798–814.

12. Pacuit E. Dynamic Epistemic Logic II: Logics of Information Change. Philosophy Compass. 2013. 8(9): 815–833.

13. Shoham Y., Leyton-Brown K. Multiagent systems: algorithmic, game-theoretic, and logical foundations. Cambridge University Press; 2008. 532 p.

14. Wooldridge M. J. An Introduction to Multiagent Systems. John Willey&Sons; 2009. 484 p.

15. Rao A. S., Georgeff M. P. BDI agents: From theory to practice. In: V. Lesser and L. Gasser (eds), Proceedings of the First International Conference on Multi-Agent Systems (ICMAS›95), 12–14 June. San Francisco, CA.; 1995. P. 312–319.

16. Hong Jiang, Vidal J. M., Huhns M. N. EBDI: An Architecture for Emotional Agents, 2007. Available at: http://jmvidal.cse.sc.edu/papers/jiang07a.pdf/.

17. Ali Orhan Aydın, Mehmet Ali Orgun. The Reactive-Causal Architecture: Radar Task Simulation //Journal of Artificial Societies and Social Simulation. 2012. Available at: http://jasss.soc.surrey.ac.uk/15/4/5.html.

18. Panteleev M. G. Logical models of intelligent agents. SPbGETU «LETI», 2022. P. 1-24. (In Russ.). Available at: https://vec.etu.ru/moodle/pluginfile.php/303181/mod_resource/content/1/Lection_3/ (Accessed 12.06.2024).

19. Karamysheva N. S., Zinkin S. A., Mitrohin M. A. Methods and models of intellectualization of computing and cyber-physical systems. Penza: Izd-vo PGU; 2022. 176 p. (In Russ.).

20. Mitrohin M. A., Karamysheva N. S., Egorov V. Yu., Zinkin S. A. Intelligent information processing. Penza: Izd-vo PGU; 2023. 320 p. (In Russ.).

21. Sardina S. Padgham L. A BDI agent programming language with failure handling, declarative goals, and planning. Autonomous Agents and Multi-Agent Systems. 2010. P. 1–53.

22. D’Inverno M., Kinny D., Luck M., Wooldridge M. A formal specification of dMARS. Intelligent Agents IV Agent Theories. Architectures, and Languages. 1998. P. 155–176.

23. Pokahr A., Braubach L., Lamersdorf W. Jadex: A BDI reasoning engine. MultiAgent Programming. 2005. P. 149–174.

24. Bordini R., Hübner J., Wooldridge M. Programming multi-agent systems in AgentSpeak using Jason. Wiley-Interscience. 2007.

25. Autonomous Decision-Making Software. http://www.aosgrp.com.au, 2010. Available: http://www.aosgrp.com.au (Accessed 30 May 2024).

26. Grabovskis А., Grundspenkis J. Identification of Relations between BDI Logic and BDI Agents. Computer Science. Applied Computer Systems. Scientific Journal of Riga Technical University. 2011. (44): 21-28. DOI: 10.2478/v10143-011-0018-1.

27. Lisanyuk E. N. Cognitive characteristics of agents of argumentation. Vestnik SPbGU. Ser. 6. Vyp. 1. = Bulletin St. Petersburg State University. 2013; 6 (1): 13–21 (In Russ.).

28. Lisanyuk E. N., Pavlova A. M. Logical aspects of the diversity of agents. Vestnik UrFU. Seriya: Ekonomika i upravlenie = Bulletin of UrFU. Series: Economics and management. 2016; 11(4): 45-60 (In Russ.).

29. Zalogova L.A. Formal Description of Logical Inference in Prolog. Vestnik Permskogo universiteta. Matematika. Mekhanika. Informatika = Bulletin of Perm University. Mathematics. Mechanics. Computer science. 2014; 4: 84–91 (In Russ.).

30. Tyurin S. F., Gorodilov A. Yu. Features of logical inference in Prolog programs. Vestnik Permskogo universiteta. Matematika. Mekhanika. Informatika = Bulletin of Perm University. Mathematics. Mechanics. Computer science. 2019; 3: 91-97. (In Russ.). DOI: 10.17072/1993-0550-2019-3-91-97.

31. Miranda J., Makitalo N., Garcia-Alonso J., Berrocal J., Mikkonen T., Canal C., Murillo J. From the Internet of Things to the Internet of People. IEEE Internet Computing. 19(2): 40-47.

32. Hitzler P. A Review of the Semantic Web Field. Communications of the ACM. 2021; 64(2):76–83. DOI:10.1145/3397512.

33. Unni D. FAIRification of health-related data using semantic web technologies in the Swiss Personalized Health Network. Scientific Data. 2023; 10(1). DOI:10.1038/s41597-02302028-y.

34. Zhang Chuanrong, Zhao Tian, Li Weidong. Geospatial Semantic Web. Springer International Publishing: Imprint: Springer; 2015. 189 p. DOI:10.1007/978-3-319-17801-1.


Review

For citations:


Karamysheva N.S., Zinkin S.A. Interaction of cognitive and reactive agents in an intelligent computing system: principles of organization. Proceedings of the Southwest State University. 2025;29(1):52-78. (In Russ.) https://doi.org/10.21869/2223-1560-2025-29-1-52-78

Views: 44


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)