Preview

Proceedings of the Southwest State University

Advanced search

Measuring-polynomial processing of input data of a computer system

https://doi.org/10.21869/2223-1560-2024-28-4-21-39

Abstract

   Purpose of research. The purpose of this study is to construct approximation grid nodes in the measurement-polynomial processing of input data of a computer system in the coefficient inverse problem for an algebraic polynomial, including for the equation of beam deflections when solving the inverse Cauchy problem.

   Methods. The main scientific methods used in this study are methods of regularization, measurement reduction, linear Lagrangian approximation, and numerical methods. Since when deriving explicit formulas in the radicals of the roots of the resolving equations for the optimal design of the approximation grid nodes according to Abel’s theorem, a limitation is imposed on the degree of the equations, in this article, in solving the problem for an algebraic polynomial with a prescribed coefficient of the second lowest term, it is proposed to use the Chebyshev alternance of extremal polynomials.

   Results. The result of the study is a technique for optimizing the approximation grid, minimizing the influence of the input data error with a uniform continuous norm of absolute errors on the accuracy of solving the problem by minimizing the Lebesgue function. The proposal to apply a modification of Chebyshev polynomials to the optimal approximation grid is substantiated.

   Conclusion. This article proposes a formalization of the problem of minimizing the influence of the input data error on the accuracy of calculating the coefficients of an algebraic polynomial in a measurement and computing system by selecting the nodes of the approximation grid through the Chebyshev alternance.

About the Author

A. P. Loktionov
Southwest State University
Russian Federation

Askold P. Loktionov,  Dr. of Sci. (Engineering), Professor

Infrastructural Energy Systems Department

305040; 50 Let Oktyabrya str. 94; Kursk

Researcher ID: P-5434-2015


Competing Interests:

The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.



References

1. Samarskii A. A., Vabishchevich P. N. Numerical Methods for Solving Inverse Problems of Mathematical Physics. Inverse and Ill-Posed Problems Series 52. De Gruyter; Berlin, New York, 2008. 438 p. doi: 10.1515/9783110205794.

2. Vatulyan A.O., Plotnikov D.K. Inverse coefficient problems in mechanics. Vestnik Permskogo nacional`nogo issledovatel`skogo politekhnicheskogo universiteta. Mekhanika = PNRPU MECHANICS BULLETIN. 2019; 3: 37-47. (In Russ.). doi: 10.15593/perm.mech/2019.3.04.

3. Perelmuter A.V. Inverse problems of structural mechanics. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel`nogo universiteta = Vestnik of Tomsk State University of Architecture and Building. 2020; 22(4): 83-101. (In Russ.). doi: 10.31675/1607-1859-2020-22-4-83-101.

4. Loktionov A. P. Information and Measurement System for Monitoring Beams in Building Structures. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University. 2021; 25(4): 29-51 (In Russ.). doi: 10.21869/2223-1560-2021-25-4-29-51.

5. Kabanikhin S.I. Inverse Problems and Artificial Intelligence. Uspekhi kibernetiki = Russian artificial intelligence Journal of Cybernetics. 2021; 2(3): 33-43. (In Russ.). DOI: 10.51790/2712-9942-2021-2-3-5.

6. Kudryavtsev K.Ya. Algorithm for constructing a polynomial of the best uniform approximation from experimental data. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta MIFI = Bulletin of the National Research Nuclear University MEPhI. 2019; 8(5): 480-486. (In Russ.). doi: 10.1134/S2304487X1905002X.

7. Meshchikhin I.A., Gavryushin S.S. The envelope method in the problem of choosing a rational composition of measuring instruments. Measurement Techniques. 2021; 64: 151-155. doi: 10.1007/s11018-021-01910-8.

8. Cheney E.W., Kincaid D.R. Numerical Mathematics and Computing. Thomson Brooks/Cole; Belmont, California, USA, 2013. 765 p. Available at: https://hlevkin.com/hlevkin/60numalgs/Pascal/Numerical%20Mathematics%20and%20Computing.pdf

9. Gorelik V.A., Zolotova T.V. The total method of Chebyshev interpolation in the problem of constructing a linear regression. Chebyshevskii Sbornik = Chebyshev collection. 2022; 23(4): 52-63. (In Russ.). doi: 10.22405/2226-8383-2022-23-4-52-63.

10. Moore R., Kearfott R., Cloud M. Introduction to Interval Analysis. Society for Industrial and Applied Mathematics; Philadelphia, USA; 2009. 234 p.

11. Sharyi S. P. Finite-dimensional interval analysis. Novosibirsk: Izdatel'stvo «XYZ»; 2024. 662 p. Available at: http://www.nsc.ru/interval/Library/InteBooks/SharyBook.pdf

12. Boykov I.V., Krivulin N.P. An Approximate Method for Recovering Input Signals of Measurement Transducers. Measurement Techniques. 2022; 64: 943-948. doi: 10.1007/s11018-022-02026-3.

13. Smirnova A., Bakushinsky A. On iteratively regularized predictor-corrector algorithm for parameter identification. Inverse Problems. 2020; 36(12), id.125015: 30. doi: 10.1088/1361-6420/abc530.

14. Ibrahimoglu B.A. Lebesgue functions and Lebesgue constants in polynomial interpolation. Journal of Inequalities and Applications. 2016; 2016(93): 1-15. doi: 10.1186/s13660-016-1030-3.

15. Bernshtein S.N. On the restrictions on the values of the polynomial Рn(х), squeeze n on the entire segment by its values at n + 1 points of the segment. In: Bernshtejn S.N. Sobr.soch., 2. Konstruktivnaya teoriya funktsii = Bernshtejn, S.N. Collected works, 2. Constructive theory of functions. Moscow: Izdat. Akad. Nauk SSSR; 1954. P. 107-126. Available at: https://djvu.online/file/ScPjfDhUujCGo

16. Verzhbitskii V.M. Fundamentals of numerical methods. Moscow:, Berlin: Direkt-Media; 2021. 850 p. Available at: https://archive.org/details/48915verzhbickiyvmosnovy-chislennyhmetodov/page/n1/mode/2up

17. Kalitkin N.N., Kolganov S.A. Construction of approximations satisfying the Chebyshev alternance. Preprinty IPM im. M.V. Keldysha = Preprints of the Institute of Applied Mathematics named after M.V. Keldysh. 2020; 91: 33 (In Russ.). doi: 10.20948/prepr-2020-91.

18. Loktionov A. P. Regularization of the lattice time function of the signal in the communication channel. Telecommunications and Radio Engineering. 2013; 72(2): 161-171. DOI: 10.1615/TelecomRadEng.v72.i2.70.

19. Loktionov A. P. Chebyshev Alternance when Approximating Initial Conditions of the Inverse Cauchy Problem. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University. 2021; 25(3): 86-102 (In Russ.). doi: 10.21869/2223-1560-2021-25-3-86-102.

20. Zolotarev E.I. Application of elliptic functions to questions about functions deviating least and most from zero. In: Zolotarev E.I., Sobr.soch., Vypusk 2. = Zolotarev E.I., Collected works, Issue 2. Leningrad. Izdat. Akad. Nauk SSSR; 1932. P. 1-59. doi: 10.21638/11701/spbu01.2020.101.

21. Prasolov V.V. Polynomials. Moscow: MTSNMO, 2003. 336 p. (In Russ.). Available at: https://klex.ru/uzw

22. Agafonova I.V., Malozemov V.N. Extremal polynomials connected with Zolotarev polynomials. Doklady` Akademii nauk. 2016; 467(5): 255-256. (In Russ.). doi: 10.7868/S0869565216090036.

23. Malozemov V.N., Tamasyan G.Sh. Etude on the theme of the polynomial filter problem (n = 3). In: Malozemov V.N. Selected lectures on extremal problems. Part two = Selected lectures on extremal problems. Part two. St. Petersburg: Izd-vo VVM, 2017. P. 305-315. (In Russ.). Available at: http://www.apmath.spbu.ru/cnsa/reps15.shtml#0312.

24. Malozemov V.N. What does information about alternance give? In: Malozemov V.N. Selected lectures on extremal problems. Part two = Selected lectures on extremal problems. Part two. St. Petersburg: Izd-vo VVM, 2017,pp. 259-267. (In Russ.). Available at: http://www.apmath.spbu.ru/cnsa/reps15.shtml#0312.

25. Loktionov A.P. Information measuring system of numerical differentiation for the analysis of elements of mechanical structures. Journal of the Serbian Society for Computational Mechanics. 2018; 12(2): 53-71. DOI: 10.24874/jsscm.2018.12.02.04.

26. Agafonova I. V., Malozemov V. N. Extremal polynomials connected with Zolotarev polynomials. Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya = Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy. 2020; 7 (65): 3-14. (In Russ.). doi: 10.21638/11701/spbu01.2020.101.

27. Soloviev S. Y. On a class of factors of the Chebyshev polynomials. Chebyshevskii sbornik = Chebyshev collection. 2021; 22(4): 241-252. (In Russ.). doi: 10.22405/2226-8383-2021-22-4-241-252.

28. Loktionov A.P. Recovery of the initial parameters of the beam with the given junior coefficients of the deflection equation. Stroitel'naya mekhanika i raschet sooruzhenii = Structural Mechanics and Analysis of Constructions. 2022; 6: 2-7. (In Russ.). doi: 10.37538/0039-2383.2022.6.2.7.

29. Luzon A. Moron M. A. Recurrence relations for polynomial sequences via Riordan matrices. Linear Algebra Appl.; 2010; 433: 1422-1446. doi: 10.48550/arXiv.0904.2672.

30. Barry P. On the restricted Chebyshev–Boubaker polynomials. Integral Transforms Spec. Funct. 2017; 28: 1-16. doi: 10.48550/arXiv.1702.04001.

31. Loktionov A.P. Inverse cauchy problem for beams in building structures. Building and Reconstruction. 2022; 2(100): 13-25. (In Russ.). DOI: 10.33979/2073-7416-2022-100-2-13-25.

32. Loktionov A. P. Information Processing Model in the Coefficient Inverse Problem for an Algebraic Polynomial. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Serija: Upravlenie, vychislitel'naja tekhnika, informatika. Meditsinskoe priborostroenie = Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering. 2022; 12(4): 177–191. (In Russ.) doi: 10.21869/2223-1536-2022-12-4-177-191.

33. Loktionov A.P. Titenko E.A. Recovery of the coefficients of an algebraic polynomial with a given free term. Information Systems and Technologies. 2023; 135(1): 29-37.

34. Loktionov A.P. Inverse cauchy problem for beams in building structures. Building and Reconstruction. 2023; 105(1): 1-15: 13-25. (In Russ.). doi: 10.33979/2073-7416-2023-105-1-3-15.


Review

For citations:


Loktionov A.P. Measuring-polynomial processing of input data of a computer system. Proceedings of the Southwest State University. 2024;28(4):21-39. (In Russ.) https://doi.org/10.21869/2223-1560-2024-28-4-21-39

Views: 414


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)