Preview

Proceedings of the Southwest State University

Advanced search

Amplitude-Frequency Shift Affecting the Accuracy of Velocity Lag Measurements

https://doi.org/10.21869/2223-1560-2024-28-1-57-70

Abstract

Purpose of research of this work is to develop a mathematical model to study the effect of amplitude-frequency offset on the absorption coefficient when using velocity lags with Doppler effect, different parameters such as aperture size, absorption coefficient, height and angle of directivity.

Methods. In this work, methods were used to model the amplitude-frequency signal shift with the Doppler effect: 1)Signal spectrum analysis method: used to study the frequency characteristics of signals, including the determination of frequency, amplitude and other parameters.2)Numerical simulation method: include the use of numerical algorithms and computer programs such as Matlab/Simulink, to simulate the physical phenomena associated with the Doppler effect and absorption. 3)Signal processing method in time and frequency domains: include various techniques for filtering, decomposition of signals and analyzing their characteristics in time and frequency, help to identify the characteristics of signals. 4)Method of mathematical modeling: include the development of mathematical models describing the motion of objects and their interaction with the environment.

Result. In this research, a mathematical model was developed to investigate the effect of various parameters on the amplitude-frequency displacement in an active acoustic system. The modeling showed how aperture size, tilt angle, absorption coefficient and bottom distance have a significant effect, and also revealed a linear relationship between the error coefficients affecting the displacement.

Conclusion. Amplitude-frequency offset studies showed that this phenomenon has a significant impact on the accuracy of Doppler lag measurements. Phased array instruments showed advantages within the long term accuracy framework. Comparison of the amplitude-frequency offset with experimental data revealed good agreement, which confirms the adequacy of the developed model. However, additional modeling is required to verify the influence of other error sources, such as territorial, side lobe coupling, beam alignment, etc., and to study in more detail the influence of roll on measurement accuracy.

About the Authors

P. S. Evsyukov
Central Research Institute «Kurs»
Russian Federation

Petr S. Evsyukov, Software Engineer

34a Kirpichnaya str., Moscow 105187, Russian Federation



O. N. Andreeva
Central Research Institute «Kurs»
Russian Federation

Olga N. Andreeva, Dr. of Sci. (Engineering), Head of Scientific and Methodological Center

34a Kirpichnaya str., Moscow 105187, Russian Federation



References

1. Borodin V.I., Smirnov G.E. Gidroakusticheskie navigatsionnye sredstva [Hydroacoustic navigation aids]. Leningrad, Sudostroenie Publ., 1983.

2. Koryakin Yu.A., Smirnov S.A., Yakovlev G.V. Korabel'naya gidroakusticheskaya tekhnika [Korabelnaya hydroacoustic technique]. Saint-Petersburg, Nauka Publ., 2004.

3. Gusev V.G. Sistemy prostranstvenno-vremennoi obrabotki gidroakusticheskoi informatsii [Systems of spatial-temporal processing of hydroacoustic information]. Leningrad, Sudostroenie Publ., 1988.

4. Konyaev K.V. Spektral'nyi analiz sluchainykh okeanologicheskikh polei [Spectral analysis of random oceanologic fields]. Leningrad, Gidrometeeoizdat Publ., 1981.

5. Polkanov K.I., Loskutova G.V., Popova O.S. [Program layout of a perspective hydroacoustic lag]. Trudy IX Vserossiiskoi konferentsii «Prikladnye tekhnologii gidroakustiki i gidrofiziki» [Proceedings of IX All-Russian conference "Applied technologies of hydroacoustics and hydrophysics"]. Saint-Petersburg, Nauka Publ., 2008.

6. Polkanov K.I.; Loskutova G.V. Prostranstvenno-chastotnye i chastotno-volnovye metody opisaniya i obrabotki gidroakusticheskikh polei [Spatial-frequency and frequencywave methods of the hydroacoustic fields description and processing]. Saint-Petersburg, Nauka Publ., 2007.

7. Kenny A., Lopez G. Doplerovskii gidrolokator: dostizheniya i rasshirennye oblasti primeneniya [Doppler sonar: achievements and extended applications]. Okean. MTS/IEEE Ispol'zovanie energii okeana = Ocean. MTS/IEEE Harnessing Power Ocean, 2012.

8. Kinsey J. K., Eustis R., Whitcomb L. L. Obzor podvodnoi navigatsii podvodnykh apparatov: Poslednie dostizheniya i novye zadachi [A review of underwater navigation of submersibles: Recent advances and new challenges]. Konferentsiya IFAC po manevrirovaniyu i upravleniyu morskimi sudami = IFAC Conference on Maneuvering and Management of Marine Vessels, 2006, vol. 88, pp. 1-12.

9. Bezmen P. A. Investigation of the Operation of the Extended Kalman Filter Supplemented by an Adaptive Digital Filter for Integrating Data from a Mobile Robot Control System. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University. 2020, 24(1): 68-89 (In Russ.). https://doi.org/10.21869/2223-1560-2020-24-1-68-89.

10. Kalman R.E., Bucy R.S. Novye rezul'taty v lineinoi fil'tratsii i teorii predskazaniya [New results in linear filtering and prediction theory]. Trudy amerikanskogo obshchestva inzhenenrov- mekhanikov = Proceedings of the American Society of Mechanical Engineers, ser. D, 1961, vol. 83, no. 1, pp. 123-142.

11. Chelpanov I.B. Optimal'naya obrabotka signalov v navigatsionnykh sistemakh [Optimal signal processing in navigation systems]. Moscow, Nauka Publ., 1967.

12. Shakhtarin B.I. Fil'try Vinera i Kalmana [Wiener and Kalman filters]. Moscow, 2016. 396 p.

13. Andreeva L.P., Ageev E.V. Application of acoustic emission method for control of microcrack formation in spot thin plate welded joint. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2016; 20(2):8-14 (In Russ.).

14. Papoulis A., Pillai S. V. Veroyatnost', sluchainye peremennye i stokhasti-cheskie protsessy [Probability, Random Variables and Stochastic Processes]. New York, McGraw- Hill Publ., 2002.

15. Davydov M. N., Lipatova A. P., Tkachenko Y. S. Methods for Estimating the Actual Size of Defects Based on the Lengths of Their Frontal Images. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University. 2019, 23(2): 18-28 (In Russ.). https://doi.org/10.21869/2223-1560-2019-23-2-18-28

16. Vinogradov K.A., Koshkaryov V.N. Absolyutnye i otnositel'nye lagi [Absolute and relative lags]. Leningrad, Sudostroenie Publ., 1990.

17. Passi G.S. Tekhnologiya fazirovannykh reshetok – sovremennaya realizatsiya peredovykh reshenii v oblasti UZK, nakoplennykh v proshlom veke [Technology of phased arrays - modern realization of advanced solutions in the field of ultrasonic testing accumulated in the last century]. V mire nerazrushayushchego kontrolya = In the World of Nondestructive Testing, 2009, no 2 (44), pp. 56-64.

18. Pinkel R. O stimulirovanii kachestva dannykh doplerovskogo gidrolokatora [On the stimulation of Doppler sonar data quality]. Doklady IEEE, 2-ya rabochaya konferentsiya po tekushchim izmereniyam = IEEE Papers, 2nd Working Conference on Current Measurements, 1982, pp. 113-116.

19. Mustier K., Wendelboe G. Vendel'boe G Uglovaya zavisimost' vysokochastotnogo obratnogo akusticheskogo rasseyaniya morskogo dna (200-400 kHz) [Angular dependence of high-frequency seafloor acoustic backscattering (200-400 kHz)]. Akademiya akusticheskikh nauk = Academy of Acoustical Sciences, 2011, vol. 130, no. 4.

20. Francois R. E., Garrison G. R. Pogloshchenie zvuka na osnove okeanicheskikh izmerenii. Chast' I: Chistaya voda i vklad sul'fata magniya [Sound absorption based on ocean measurements. Part I: Pure Water and magnesium sulfate contributions]. J. Acoust. Soc. Am., 1982, vol. 72, no. 3, pp. 896–907.


Review

For citations:


Evsyukov P.S., Andreeva O.N. Amplitude-Frequency Shift Affecting the Accuracy of Velocity Lag Measurements. Proceedings of the Southwest State University. 2024;28(1):57-70. (In Russ.) https://doi.org/10.21869/2223-1560-2024-28-1-57-70

Views: 439


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)