Assessment of Data Exchange Protocol Workload in Uavs on Intelligent Components
https://doi.org/10.21869/2223-1560-2023-27-3-128-151
Abstract
Purpose of research. In recent years, interest in the use of drones in various fields has grown significantly.
Methods. The reasons are due to the continuous growth of technology, especially the advent of fast microprocessors that enable autonomous control of multiple systems. Photography, construction, inspection and surveillance are just some of the areas in which the use of drones is becoming commonplace. The purpose of the work is to study the operation of protocols at various levels of interaction, to propose options for improving the security of interaction based on the introduction of intelligent components. The article discusses the protocols involved in the operation of UAVs at different levels, their features, advantages and disadvantages, as well as their load and security. Using realistic technological features of unmanned aerial vehicles to test models and methods can be very relevant for practical purposes in various industries from civil to military. The objectives of the study are to detail the protocols for information exchange in UAVs at various levels, taking into account the analysis of the structure of the transmitted information.
Results. The study examines various communication protocols used in UAV systems and also analyzes their performance. To qualitatively assess the impact on information security, it is proposed to introduce intelligent components that dynamically adapt data exchange protocols based on real-time threat analysis and system capabilities.
Conclusion. Efficient use of energy is critical to efficient and safe UAV operation. Power outages can cause serious damage to the flight area. The issues of correlation of protocol load associated with energy consumption and charging strategies are touched upon and considered.
Keywords
About the Authors
S. G. ChernyRussian Federation
Sergey G. Cherny, Cand. of Sci. (Engineering), Associate Professor of Electrical Equipment of Ships and Production Operation Department, Professor of the Department of COIB,
5/7 Dvinskaya str., St. Petersburg 198035;
82 Ordzhonikidze str., Kerch, 298309, Republic of Crimea.
Competing Interests:
The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.
N. V. Shiparenko
Russian Federation
Nikita V. Shiparenko, Student,
5/7 Dvinskaya str., St. Petersburg 198035.
Competing Interests:
The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.
M. V. Chupakov
Russian Federation
Maksim V. Chupakov, Head of the Research Laboratory,
1a, Dybenko str., Sevastopol 299028.
Competing Interests:
The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.
References
1. Kaljaev A. I., Korovin Ja. S. Kompleks obnaruzhenija i porazhenija BPLA-narushitelej s pomoshh'ju BPLA-perehvatchikov [Complex for detecting and defeating intruder UAVs using interceptor UAVs]. Voprosy oboronnoj tehniki. Serija 16: Tehnicheskie sredstva protivodejstvija terrorizmu = Questions of Defense Technology. Series 16: Technical Means of Countering Terrorism, 2021, no. 3-4(153-154), pp. 101-107. EDN GMUUOD.
2. Ablec A. A., A Strebkov. N., Zavgorodnjaja E. V. Opyt sozdanija roja BPLA v vooruzhennyh silah inostrannyh gosudarstv [The experience of creating a swarm of UAVs in the armed forces of foreign states]. Voennaja mysl' = Military Thought, 2022, no. 6, pp. 137-146. EDN ISYTIR.
3. Penskoj I. S., Rogozin O. V. Nejro-nechetkij PID-reguljator v zadache uglovoj stabilizacii mul'tirotornogo BPLA [Neuro-fuzzy PID controller in the problem of angular stabilization of a multirotor UAV]. Novye informacionnye tehnologii v avtomatizirovannyh sistemah = New Information Technologies in Automated Systems, 2018, no. 21, pp. 320-327. EDN XNRSJV.
4. Balashenko I. N., Gorynja N. A., Gun'ko A. S., Nikonov V. I. Aktual'nye voprosy upravlenija gruppoj BPLA [Topical issues of UAV group management]. Dinamika sistem, mehanizmov i mashin = Dynamics of Systems, Mechanisms and Machine, 2022. vol. 10, no. 1, pp. 14-17. DOI 10.25206/2310-9793-2022-10-1-14-17. – EDN XHEHPM.
5. Podoplekin Ju. F., Tolmachev S. G., Sharov S. N. Informacionno-upravljajushhaja sistema privedenija bespilotnyh letatel'nyh apparatov na dvizhushheesja sudno [Information and control system for bringing unmanned aerial vehicles to a moving vessel]. Informacionno-upravljajushhie sistemy = Information and Control Systems, 2012, no. 3(58), pp. 22-28. EDN OYIGWZ.
6. Silkin A. A., Ivanovskij A. N., Chernyj S. G. [Automated UAV control system within the local positioning system]. Sostojanie i perspektivy razvitija sovremennoj nauki po napravleniju "Robototehnika": Sbornik statej IV Vserossijskoj nauchno-tehnicheskoj konferencii [The state and prospects of development of modern science in the field of Robotics. Collection of articles of the IV All-Russian Scientific and Technical Conference]. Anapa, 2022, pp. 224-235 (In Russ.). EDN WTLPIU.
7. Michels M., Wever H. Musshoff O. Drones take flight in forests: Uncovering the ‘tree’-mendous potential and ‘timber’-rific challenges for German forest managers by applying the technology acceptance model’. Forest Policy and Economics, 2023, 157, p. 103077. doi:10.1016/j.forpol.2023.103077.
8. Zhu Z., Jeelani I., Gheisari M. Physical risk assessment of drone integration in construction using 4D simulation. Automation in Construction, 2023, 156, p. 105099. doi:10.1016/j.autcon.2023.105099.
9. Garg V. et al. Drones in last-mile delivery: A systematic review on efficiency, accessibility, and Sustainability. Transportation Research Part D: Transport and Environment, 2023, 123, p. 103831. doi:10.1016/j.trd.2023.103831.
10. Kutahov V. P., Meshherjakov R. V. Upravlenie gruppovym povedeniem bespilotnyh letatel'nyh apparatov: postanovka zadachi primenenija tehnologij iskusstvennogo intellekta [Management of group behavior of unmanned aerial vehicles: setting the task of using artificial intelligence technologies]. Problemy upravlenija = Problems of Management, 2022, no. 1, pp. 67-74. DOI 10.25728/pu.2022.1.5. EDN JLXUXI.
11. Meshherjakov R. V., Iljuhin B. V. Obzor sorevnovatel'noj robototehniki. Sostjazanija sportivnyh robotov [Review of competitive robotics. Combinations of sports robots]. Robototehnika i tehnicheskaja kibernetika = Robotics and Technical Cybernetics, 2022, vol. 10, no. 4, pp. 255-260. DOI 10.31776/RTCJ.10402. – EDN ISXMEV.
12. Emelianov S. G., Bobyr M. V., Bondarenko B. A. Fuzzy-logic Color Recognition System Using a Fast Defuzzifier. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University. 2022; 26(4): 103-116 (In Russ.). https://doi.org/10.21869/2223-1560-2022-26-4-103-116.
13. Emelianov S. G., Bobyr M. V., Kryukov A. G. Research of the Properties of the Breadth-First Search Algorithm for Finding the Movement Route of Robots. Izvestiya YugoZapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University. 2022; 26(4): 39-56 (In Russ.). https://doi.org/10.21869/2223-1560-2022-26-4-39-56.
14. Alwateer M., Loke S. W., Fernando N. Enabling drone services: Drone crowdsourcing and drone scripting. IEEE Access, 2019, vol. 7, pp. 110035-110049. DOI 10.1109/ACCESS.2019.2933234. EDN ICGTGY.
15. Hassija V., Saxena V., Chamola V. Scheduling drone charging for multi-drone network based on consensus time-stamp and game theory. Computer Communications, 2020, vol. 149, pp. 51-61. DOI 10.1016/j.comcom.2019.09.021. EDN WAIQEY.
16. Hu J., Lanzon A. An innovative tri-rotor drone and associated distributed aerial drone swarm control. Robotics and Autonomous Systems, 2018, vol. 103, pp. 162-174. DOI 10.1016/j.robot.2018.02.019. EDN MEFVVB.
17. Kim H., Chang W. Intuitive Drone Control using Motion Matching between a Controller and a Drone. Archives of Design Research, 2022, vol. 35, no. 1, pp. 93-113. DOI 10.15187/adr.2022.02.35.1.93. EDN RTZJES.
18. Cocoma-Ortega J. A., Martinez-Carranza J. A compact CNN approach for drone localisation in autonomous drone racing. Journal of Real-Time Image Processing, 2022, Vol. 19, no. 1, pp. 73-86. DOI 10.1007/s11554-021-01162-3. EDN CFYATS.
19. Torabbeigi M., Lim G. J., Ahmadian N., Kim S. J. An Optimization Approach to Minimize the Expected Loss of Demand Considering Drone Failures in Drone Delivery Scheduling. Journal of Intelligent and Robotic Systems, 2021, vol. 102, no. 1. DOI 10.1007/s10846-021-01370-w. EDN RBLKPP.
20. Hoang M. L., Carratu M., Paciello V., Pietrosanto A. Noise Attenuation on IMU Measurement for Drone Balance by Sensor Fusion. Conference Record - IEEE Instrumentation and Measurement Technology Conference, Virtual, Glasgow, 17–20 maja 2021 goda. Virtual, Glasgow, 2021, 9460041 p. DOI 10.1109/I2MTC50364.2021.9460041. EDN HYQCOI.
Review
For citations:
Cherny S.G., Shiparenko N.V., Chupakov M.V. Assessment of Data Exchange Protocol Workload in Uavs on Intelligent Components. Proceedings of the Southwest State University. 2023;27(3):128-151. (In Russ.) https://doi.org/10.21869/2223-1560-2023-27-3-128-151