Autotesting an Embedded Reconfigurable Computing System
https://doi.org/10.21869/2223-1560-2023-27-1-140-152
Abstract
Purpose of research. The main idea is to build a mathematical testing model that integrates different aspects of an embedded reconfigurable computing system and its interactions. This model provides an efficient representation of test scenarios and allows to analyse the dynamics of the reconfigurable computing system during testing. The paper also discusses methods for generating test sequences based on the properties of a finite state machine.
Methods. The authors propose to represent the autotest as a finite state Mile machine, where states serve to store information about the current state of an embedded reconfigurable computing system. The input signal is the interaction with the system and the output signal is the system's response to the input signal. This approach allows to formalize the testing process and simplify the analysis of possible problems.
Results. This paper discusses the application of automata theory in the context of automated testing of embedded reconfigurable computing systems. Automata theory provides effective methods and tools for analysis and simulation of discrete dynamic systems, which makes it suitable for automated testing tasks.
Conclusion. The results show that the use of automata theory can significantly improve the quality and efficiency of automated testing of embedded reconfigurable computing systems. This approach provides a deeper analysis of the system and allows to detect and prevent potential problems that may arise during its operation.
Keywords
About the Authors
A. I. MartyshkinRussian Federation
Аlexey I. Martyshkin, Cand. of Sci. (Engineering), Associate Professor, Head of the Software Department
1а/11, passage of Baydukova/ul.Gagarina, Penza 440039, Russian Federation
I. A. Kiryutkin
Russian Federation
Ilya А. Kiryutkin, Student of Computing Technology Department
40, Krasnaya str., Penza 440026, Russian Federation
E. A. Merenyasheva
Russian Federation
Еlizaveta А. Merenyasheva, Student of Computing Technology Department
40, Krasnaya str., Penza 440026, Russian Federation
References
1. Volchikhin V.I., Vashkevich N.P., Biktashev R.A. Modeli sobytiinykh nedeterminirovannykh avtomatov predstavleniya algoritmov upravleniya vzaimodeistvuyushchimi protsessami v mnogoprotsessornykh vychislitel'nykh sistemakh na osnove ispol'zovaniya mekhanizma monitora [Models of event-driven nondeterministic automata of representation of control algorithms of interacting processes in multiprocessor computer systems based on the monitor mechanism]. Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Tekhnicheskie nauki = Proceedings of Higher Educational Institutions. Volga region. Technical Sciences, 2013, no. 2 (26), pp. 5-14.
2. Bourdonov I.B., Kosachev A.S., Kulamin V.V. Ispol'zovanie konechnykh avtomatov dlya testirovaniya programm [Using Finite-State Machines for Testing Programs]. Programmirovanie = Programming, 2000, vol. 26, no. 2, pp. 61-73.
3. Trokoz D.A., Zabrodina K.A., Safronova V.S., Veselova M.D., Sinev M.P., Mitrohin M.A., Gurin E.I., Pashchenko T.Y. Formalized Description of Cyber-Physical Systems Models Using Temporary Non-Deterministic Automata. Journal of Physics: Conference Series. II International Scientific Conference on Metrological Support of Innovative Technologies (ICMSIT II-2021). Krasnoyarsk, 2021, vol. 1889, no. 2, 22068 p. IOP Publishing.
4. Guzik V.F., Kalyaev I.A., Levin I.I. Rekonfiguriruemye vychislitel'nye sistemy [Reconfigurable computing systems]. Taganrog, 2016. 472 p.
5. Kotenko A.P., Bukarenko M.B. Modelirovanie konechnymi avtomatami system massovogo obsluzhivaniya s razlichimymi kanalami [Finite Automata Modeling of Mass Service Systems with Distinguishable Channels]. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk = Izvestiya Samara Scientific Center of the Russian Academy of Sciences, 2014, vol. 16, no. 4-2, pp. 318-321.
6. Dubinin V.N., Drozdov D.N. Proektirovanie i realizatsiya sistem upravleniya diskretnymi sobytiinymi sistemami na osnove ierarkhicheskikh modul'nykh nedeterminirovannykh avtomatov (Ch. 1. Formal'naya model') [Design and implementation of control systems of discrete event systems based on hierarchical modular nondeterministic automata (Part 1. Formal model)]. Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Tekhnicheskie nauki = Proceedings of Higher Educational Institutions. Volga region. Technical Sciences, 2016, no. 1 (37), pp. 28-39.
7. Simankov V.S., Tolkachev D.M. Modelirovanie slozhnykh ob"ektov v rezhime real'nogo vremeni na osnove setei Petri [Simulation of complex objects in real time based on Petri nets]. Vestnik Adygeiskogo gosudarstvennogo universiteta. Seriya 4: Estestvennomatematicheskie i tekhnicheskie nauki = Bulletin of Adygei State University. Series 4: Natural Mathematical and Technical Sciences, 2012, no. 4 (110), pp. 202-209.
8. Trokoz D.A., Biktashev R.A., Sinev M.P., Fedyashov M.S., Sheyanov N.N. Metodika preobrazovaniya temporal'nogo konechnogo avtomata v SP-model' [Technique of transformation of temporal finite state machine into SP-model]. XXI vek: itogi proshlogo i problem nastoyashchego plyus = XXI Century: Results of the Past and Problems of the Present Plus, 2020, vol. 9, no. 3 (51), pp. 45-49.
9. Solov'ev V.V. Minimizatsiya konechnykh avtomatov Mili putem ispol'zovaniya znachenii vykhodnykh peremennykh dlya kodirovaniya vnutrennikh sostoyanii [Minimization of Milei finite automata by using values of output variables for coding internal states]. Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya = Proceedings of the Russian Academy of Sciences. Theory and Control Systems, 2017, no. 1, pp. 98-106.
10. Tvardovsky A.S., Evtushenko N.V., Gromov M.L. Minimizatsiya avtomatov s taimautami i vremennymi ogranicheniyami [Minimization of automata with timeouts and time constraints]. Trudy Instituta sistemnogo pro-grammirovaniya RAN = Proceedings of the Institute for System Programming RAS, 2017, vol. 29, no. 4, pp. 139-154.
11. Beryoza A.N., Lyashov M.V. Evolyutsionnyi sintez konechnykh avtomatov [Evolutionary synthesis of finite automata]. Izvestiya YuFU. Tekhnicheskie nauki = Proceedings of SFU. Technical Sciences, 2011, no.7, pp. 210-217.
12. Trokoz DA, Iskhakov NV, Sinev MP, Mitrohin MA, Sivishkina NA Temporal'nyi analiz kiberfizicheskikh sistem s ispol'zovaniem teorii avtomatov [Temporal analysis of cyber-physical systems using the theory of automata]. XXI vek: itogi proshlogo i problem nastoyashchego plyus = XXI Century: the Results of the Past and Present Problems Plus, 2019, vol. 8, no. 3 (47), pp. 113-117.
13. Zakharov N.G., Rogov V.N. Sintez tsifrovykh avtomatov [Synthesis of digital automata]. Ulyanovsk, 2003, 135 p.
14. Pashchenko D.V., Trokoz D.A., Martyashin G.V., Maximova K.S., Balzannikova E.A. Setevaya model' yazyka "T" na osnove tsvetnykh bezopasnykh ierarkhicheskikh rekursivnykh setei Petri [A network model of "T" language based on color safe hierarchical recursive Petri nets]. Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Tekhnicheskie nauki = Proceedings of Higher Educational Institutions. Volga region. Technical Sciences, 2015, no. 3 (35), pp. 25-35.
15. Tashildar A. et al. Application development using flutter. International Research Journal of Modernization in Engineering Technology and Science, 2020, vol. 2, no. 8, pp. 1262-1266.
16. Denisov A.A. Sovremennye sredstva razrabotki mobil'nykh prilozhenii [Modern means of mobile application development]. Vestnik Voronezhskogo instituta vysokikh tekhnologii = Bulletin of Voronezh Institute of High Technologies, 2019, no. 2, pp. 64-67.
17. Dai W., Dubinin V., Vyatkin V. Automatically Generated Layered Ontological Models for Semantic Analysis of Component Based Control Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems (IEEE Publishing), 2013, vol. 9, no. 4, pp. 2124–2136.
18. Mikheev M. Yu., Zhashkova T. V., Shcherban A. B., Grishko A. K., Rybakov I. M. Generalized structural models of complex distributed objects. Proceedings of 2016 IEEE East-West Design and Test Symposium, EWDTS 2016. Yerevan, Institute of Electrical and Electronics Engineers Inc., 2017, 7807742 p. DOI 10.1109/EWDTS.2016.7807742.
19. Rybalko M.A., Ivanova E.A. [Software testing, testing methods]. Informatsionnoe obshchestvo: sovremennoe sostoyanie i perspektivy razvitiya [Information society: current state and prospects for development]. Krasnodar, 2017, pp. 320-322 (In Russ.).
20. Karavaeva O.V., Borisova K.V. Razrabotka sistemy avtomatizirovannogo testirovaniya [Development of an automated testing system]. Vestnik nauki i obrazovaniya = Bulletin of Science and Education, 2018, no. 13 (49), pp. 45-48.
21. Nadikto M.O., Belim S.V. [Development of autotests to ensure software quality Education]. Obrazovanie. Transport. Innovatsii. Stroitel'stvo [Education. Transport. Innovations. Construction]. Omsk, 2022, pp. 588-594 (In Russ.).
22. Lagarnikova A.V. Algoritm postroeniya avtotestov na osnove chasto ispol'zuemykh testovykh stsenariev v mobil'nom prilozhenii [Algorithm of autotestroythm on the basis of frequently used test scenarios in a mobile application]. Vestnik nauki, 2019, vol. 1, no. 2 (11), pp. 155-158.
Review
For citations:
Martyshkin A.I., Kiryutkin I.A., Merenyasheva E.A. Autotesting an Embedded Reconfigurable Computing System. Proceedings of the Southwest State University. 2023;27(1):140-152. (In Russ.) https://doi.org/10.21869/2223-1560-2023-27-1-140-152