Preview

Proceedings of the Southwest State University

Advanced search

Digital Technologies for Assessing and Predicting the Impact of Spatiotemporal Distribution of Greenhouse Gases on the Photosynthetic Activity of Crops

https://doi.org/10.21869/2223-1560-2023-27-1-38-56

Abstract

Purpose of research: formation of a bank of models for the implementation of simulation experiments to assess and predict the values of greenhouse gas concentrations in the surface layer of the territory's atmosphere based on artificial neural networks and GIS technologies. The influence of the increased concentration of carbon dioxide in the surface layer of the atmosphere on the growth and development of agricultural plants, namely on the change in photosynthetic activity, the level of mineralization of the humus layer of the soil, which affects crop yields, is considered. The peculiarities of agricultural production determine the relevance of the creation and implementation of a new intelligent technology that will provide the opportunity to identify optimal parameters of crop production.
Methods. The formation of a training sample for a neural network was carried out through numerical experiments and mathematical modeling methods. To select the best neural network topology for predicting the concentration of greenhouse gases in the territory under consideration, experiments were conducted that revealed the standard deviation and relative error. To assess the predictive abilities of the models, field experiments were conducted to measure CO2 concentrations in the surface layer of the atmosphere in the agricultural territories of the Belgorod region.
Results. A software toolkit has been developed that makes it possible to visualize the dispersion and accumulation of greenhouse gases in the surface layer of the atmosphere. This makes it possible to conduct simulation experiments necessary to determine the territories that are under the influence of man-made sources. An assessment of the photosynthetic activity of plants in the selected territory was carried out, which allows us to form further recommendations for the effective use of agricultural territory aimed at increasing crop yields.
Conclusion. The paradigms of neural networks were considered, experiments were conducted to identify the best topology. A software toolkit has been developed to visualize the dispersion and accumulation of greenhouse gases in the surface layer of the atmosphere for decision makers. The effects of technogenic factors on the photosynthetic apparatus of agricultural plants are analyzed, on the basis of which conclusions and practical recommendations for the cultivation of agricultural crops are formulated.

About the Authors

O. A. Ivashchuk
Belgorod State National Research University 
Russian Federation

Olga A. Ivashchuk, Dr. of Sci. (Engineering), Professor of the Information and Robotic Systems Department

 85, Pobedi str., Belgorod 308015, Russian Federation 



O. R. Kuzichkin
Belgorod State National Research University 
Russian Federation

Oleg R. Kuzichkin, Dr. of Sci. (Engineering), Professor of the Information and Robotic Systems Department 

 85, Pobedi str., Belgorod 308015, Russian Federation 



D. V. Goncharov
Belgorod State National Research University 
Russian Federation

Dmitry V. Goncharov, Senior Lecturer of Information and Robotic Systems Department 

 85, Pobedi str., Belgorod 308015, Russian Federation 

 



V. A. Dunaeva
Belgorod State National Research University 
Russian Federation

Victoria A. Dunaeva, Student of the Information and Robotic Systems Department 

 85, Pobedi str., Belgorod 308015, Russian Federation 



References

1. Fedorov V. I., Ivashchuk O. A., Uzharinskij A. Yu. Razrabotka modeli ocenki i prognozirovaniya sostoyaniya pochv sel'sko-gorodskih territorij na osnove iskustvennoj nejronnoj seti [Development of a model for assessing and predicting the state of soils of rural-urban areas based on an artificial neural network]. Nauchnyj rezul'tat. Informacionnye tekhnologii = Scientific Result. Information Technology, 2017, vol. 2, no. 4, pp. 3-9.

2. Fedorov V. I., Ivashchuk O. D., Dolinskij A. A. Razrabotka metodov podderzhki prinyatiya reshenij pri gradostroitel'nom zonirovanii sel'sko-gorodskih territorij s ispol'zovaniem ocenki kachestva pochv [Development of decision support methods for urban zoning of rural-urban areas using soil quality assessment]. Uspekhi sovremennogo estestvoznaniya = Successes of Modern Natural Science, 2019, no. 7, pp. 127-132.

3. Shtana A. I. [A model for predicting the state of soils of rural-urban areas based on neural networks]. Studenchestvo Rossii: vek XXI [Students of Russia: century XXI]. Orel, 2019, pp. 664-673 (In Russ.).

4. Ivashchuk O.A., Fedorov V.I., Goncharov D.V. Approaches to the Development of an Automated Control System for the Adaptation of Agricultural Areas under the Changing Greenhouse Effect. Mathematical Statistician and Engineering Applications, 2022, vol. 71, no. 32, pp. 948-956.

5. Albegov R.B., Gagieva S.S. Izmenenie klimata Severnogo Kavkaza. Vozmozhnye ugrozy i otvetnye mery [Climate change in the North Caucasus. Possible threats and responses]. Vestnik MANEB = MANEB Bulletin, 2010, vol. 15, no. 4, pp. 162-167.

6. Meteshkin K. A., Kutickaya E. S. Zadacha geomodelirovaniya zagryaznenij urbanizirovannyh territorij [The task of geomodeling pollution of urbanized territories]. Uchenye zapiski Krymskogo federal'nogo universiteta imeni VI Vernadskogo. Geografiya. Geologiya = Scientific Notes of the Crimean Federal University named after V. I. Vernadsky. Geography. Geology, 2010, vol. 23, no. 2, pp. 183-189.

7. Bischokov R. M., Suhanova S. F. [The main factors influencing biological objects]. Nauchno-tekhnicheskoe obespechenie agropromyshlennogo kompleksa v realizacii Gosudarstvennoj programmy razvitiya sel'skogo hozyajstva do 2020 goda [Scientific and technical support of the agro-industrial complex in the implementation of the State Program for the Development of Agriculture until 2020]. Kurgan, 2019, pp. 413-418 (In Russ.).

8. Pryadkina G.A. Pigmenty, effektivnost' fotosinteza i produktivnost' pshenicy [Pigments, photosynthesis efficiency and wheat productivity]. Plant Varieties Studying and protection, 2018, vol. 14, no 1.

9. Garmonov K. V., Shchukina T. V., Zherlykina M. N., Kukina O. B. Issledovanie zagryazneniya okruzhayushchej sredy ot vybrosov vrednyh veshchestv promyshlennyh predpriyatij s uchetom klimaticheskih osobennostej regiona [Investigation of environmental pollution from emissions of harmful substances from industrial enterprises taking into account the climatic features of the region]. Zhilishchnoe hozyajstvo i kommunal'naya infrastruktura = Housing and Communal Infrastructure, 2017, no. 3, pp. 84-92.

10. Radpour S., Gemechu E., Ahiduzzaman M., Kumar A. Developing a framework to assess the long-term adoption of renewable energy technologies in the electric power sector. The effects of carbon price and economic incentives Renewable and Sustainable Energy Reviews, 2021, no. 111663, 152 p.

11. Kodaneva S. I. Potencial cifrovyh tekhnologij dlya smyagcheniya posledstvij i adaptacii k izmeneniyu klimata [The potential of digital technologies for mitigation and adaptation to climate change]. Rossiya i sovremennyj mir = Russia and the Modern World, 2022. no. 1 (114), pp. 63-85.

12. Kenneth H., Brian V. M., Iva R. S. Full energy system transition towards 100% renewable energy in Germany in 2050. Renewable and Sustainable Energy Reviews, 2019, vol. 102, pp. 1-13.

13. Kurakina N. I., Myshko R. A. Modelirovanie zagryazneniya atmosfernogo vozduha promyshlennymi ob"ektami v tekhnologii geoinformacionnyh sistem [Modeling of atmospheric air pollution by industrial objects in geoinformation systems technology]. Izv. SPbGETU “LETI” = Proceedings of the SPbGETU “LETI”, 2021, no. 5, pp. 21-27.

14. Tomakova R.A., Filist S.A., Yaa Z.Do. Universal'nye setevye modeli dlya zadach klassifikacii biomedicinskih dannyh [Universal network models for classification tasks of biomedical data]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2012, no. 4-2 (43), pp. 44-50.

15. Drejzin V.E., Grimov A.A. Izmeritel'nyj blok dlya nejtronnogo spektrometra real'nogo vremeni s vychislitel'nym vosstanovleniem energeticheskih spektrov s pomoshch'yu nejronnyh setej [Measuring unit for a real-time neutron spectrometer with computational restoration of energy spectra using neural networks]. Izvestiya YugoZapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2012, no. 2-3, pp. 223-228.

16. Vologzhina S. Zh. Ocenka zagryazneniya vozdushnogo bassejna g. Ulan-Ude [Assessment of pollution of the air basin of Ulan-Ude]. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Nauki o Zemle = News of Irkutsk State University. Series: Earth Sciences, 2011, vol. 1, pp. 48-59.

17. Orlova I.V. Funkcional'noe zonirovanie zemel' sel'skohozyajstvennogo naznacheniya dlya celej sbalansirovannogo prirodopol'zovaniya [Functional zoning of agricultural lands for the purposes of balanced nature management]. Fundamental'nye issledovaniya = Fundamental research, 2014, no.5.

18. Bischokov R. M. Analiz, modelirovanie i prognoz urozhajnosti sel'skohozyajstvennyh kul'tur dlya Kabardino-Balkarskoj Respubliki s ispol'zovaniem apparata nechetkoj logiki [Analysis, modeling and forecast of crop yields for the Kabardino-Balkar Republic using fuzzy logic apparatus]. Vestnik Rossijskogo universiteta druzhby narodov. Seriya: Agronomiya i zhivotnovodstvo = Bulletin of the Peoples' Friendship University of Russia. Series: Agronomy and Animal Husbandry, 2020, vol. 15, no. 2, pp. 123-133.

19. Salimov D. S., Ergashev A., Abduloev A. Vliyanie povyshennyh koncentracij CO2 i drugih stressovyh ekologicheskih faktorov na produktivnost' i soderzhanie krahmala belka v zerne razlichnyh sortov pshenicy [Influence of elevated concentrations of CO2 and other stressful environmental factors on productivity and protein starch content in grains of various wheat varieties]. Vestnik Tadzhikskogo nacional'nogo universiteta. Seriya estestvennyh nauk = Bulletin of the Tajik National University. Series of Natural Sciences, 2015, no. 1-5-2, pp. 23-28.

20. Ivashchuk O. A., Fedorov V. I., Goncharov D. V. [Development of a method and algorithm for assessing agricultural territories in the conditions of greenhouse effect dynamics]. Innovacionnye tekhnologii v nauke i obrazovanii. Sbornik nauchnyh trudov Yubilejnoj mezhdunarodnoj nauchno-prakticheskoj konferencii [Innovative technologies in science and education. Collection of scientific papers of the X Anniversary International Scientific and practical Conference]. Rostov-na-Donu, Obshchestvo s ogranichennoj otvetstvennost'yu "DGTU-PRINT"Publ., 2022, pp. 232-236 (In Russ.). DOI 10.23947/itse.2022.232-236. – EDN RPYVRU.


Review

For citations:


Ivashchuk O.A., Kuzichkin O.R., Goncharov D.V., Dunaeva V.A. Digital Technologies for Assessing and Predicting the Impact of Spatiotemporal Distribution of Greenhouse Gases on the Photosynthetic Activity of Crops. Proceedings of the Southwest State University. 2023;27(1):38-56. (In Russ.) https://doi.org/10.21869/2223-1560-2023-27-1-38-56

Views: 420


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1560 (Print)
ISSN 2686-6757 (Online)