Causes´ Analysis of Cracks During Welding of High-Pressure Vessel Body Made of Titanium Alloy
https://doi.org/10.21869/2223-1560-2022-26-4-8-21
Abstract
Purpose of reseach is to identify the causes of cracks during welding of high-pressure vessel body made of titanium alloy.
Methods. Features of welded joint microstructure of high-pressure vessel body made of titanium alloy are described and studied by color flaw detection methods, fluoroscopy, and examination of the cuts. The causes of cracks in the bodies of pressure vessels are identified. The causes are a combination of internal stresses and structures features.
Results. Based on the analysis of cut samples microstructure, it follows that the stamping of the power element was supplied without preliminary heat treatment. The formation of crack foci on the inner surface of the power element, at the place of alloy transition to the area of the attachment site, is primarily associated with large volumetric internal stresses, which are additionally summed up with surface stresses from machining and thermal stresses during welding. Based on the obtained data, it follows that when using a specialized tooling with a copper backing that provides pressurization of inert gas, welding stresses in a weld area are reduced by several orders of magnitude compared to the area where the tooling was without copper backing. As a result of the study, it was revealed that the causes of cracks in the bodies of high-pressure vessels are a combination of internal stresses due to the lack of preliminary thermal treatment of power elements made of titanium alloy, which are part of a high-pressure vessel, as well as stresses arising during welding of the power element with shells, considering design features.
Conclusion. To eliminate the cause of cracks, additional experimental work was carried out. Surfacing the manual ADF of reinforcing roller into the zone of maximum stresses of the power element was done. The proposed solution met expectations - all the bodies of high-pressure vessels passed hydraulic tests, which made it possible to preserve material part.
About the Authors
V. Y. RyumshinRussian Federation
Vadim Y. Ryumshin, Chief Welder
Moscow region, Lytkarino
S. A. Chevychelov
Russian Federation
Sergey A. Chevychelov, Cand. of Sci. (Engineering), Head of the Machine-building Technologies and Equipment Department
Kursk
References
1. Horev M. A., Horev A. I. Titanovye splavy, ih primenenie i perspektivy pazvitiya [Titanium alloys, their application and prospects lit up]. Materialovedenie, 2005, no. 7, pp. 25-34.
2. Babko A. P., Kleshnina O. N. Tekhnologicheskie osobennosti lazernoj svarki titanovyh splavov [Technological features of laser welding of titanium alloys]. Molodezh' i nauka: aktual'nye problemy fundamental'nyh i prikladnyh issledovanij: materialy II Vserossijskoj nacional'noj nauchnoj konferencii studentov, aspirantov i molodyh uchenyh [Youth and Science: actual problems of fundamental and applied research. Materials of the II All-Russian National Scientific Conference of Students, Postgraduates and Young Scientists]. Komsomol'sk-na-Amure, Komsomol'skij-na-Amure gosudarstvennyj universitet Publ., 2019, pp. 24- 26. EDN NBUAYL.
3. Onuchin S. V., Proskurin V. D. Avtomaticheskaya argonodugovaya svarka krivolinejnyh shvov izdelij iz titana [Automatic argon arc welding of curved seams of titanium products]. Promyshlennost': novye ekonomicheskie realii i perspektivy razvitiya. Sbornik statej I Vserossijskoj nauchno-prakticheskoj konferencii (s mezhdunarodnym uchastiem) [Industry: New economic realities and development prospects: collection of articles of the I AllRussian Scientific and Practical Conference (with international participation)]. Orenburg, Agentstvo Pressa Publ., 2017, pp. 232-237. EDN ZNMRZH.
4. Solodkov M. Zh., Sinica A. N. Komp'yuternoe modelirovanie temperaturnyh polej pri svarke titana [Computer simulation of temperature fields during titanium welding]: Materialy, oborudovanie i resursosberegayushchie tekhnologii: Materialy Mezhdunarodnoj nauchno-tekhnicheskoj konferencii [Materials, equipment and resource-saving technologies: Materials of the International Scientific and Technical Conference]. Mogilev, 2019, pp. 169. EDN CZKDWA.
5. Barmenkov V. V. Osobennosti svarki titana [Features of titanium welding]. Vestnik magistratury = Bulletin of the Magistracy, 2019, no. 1-2(88), pp. 74-75. EDN YVSSRN.
6. Owa T., Kondo T., Takizawa H. Welding Int. 2010, vol.24, pp. 182-187.
7. Shishokin M. V. Svarka titana [Welding of titanium]. Nauchnomu progressu – tvorchestvo molodyh = Scientific progress – creativity of the young, 2018, no. 2, pp. 55-56. EDN YKWAPB.
8. Ulanovskaya A. I., Evin A. M., Bahmatov P. V. Issledovanie vliyaniya kachestva prisadochnoj provoloki na svojstva svarnyh soedinenij iz splava VT 20 [Investigation of the influence of the quality of filler wire on the properties of welded joints made of alloy VT 20]. Metallurgiya: tekhnologii, innovacii, kachestvo. Trudy XXI Mezhdunarodnoj nauchnoprakticheskoj konferencii [Metallurgy: Technologies, innovations, quality. Proceedings of the XXI International Scientific and Practical Conference]. Novokuzneck: Sibirskij gosudarstvennyj industrial'nyj universitet Publ., 2019, pp. 335-339. EDN RWYOPB.
9. Solov'ev S. A., Denisov V. I., Matyushkin B. A., Tolkachev A. A. Tekhnologicheskie osobennosti svarki titana impul'snoj dugoj [Technological features of titanium pulsed arc welding]. Svarochnoe proizvodstvo = Welding Production, 2017, no. 3, pp. 3-8. EDN WOFJJM.
10. Kolomenskij A. B., Shahov S. V., Kolomenskij B. A. Vliyanie gazonasyshchennyh sloyov i oksidnyh plyonok na udarnuyu vyazkost' titanovyh splavov razlichnyh grupp prochnosti [The effect of gas-saturated layers and oxide films on the impact strength of titanium alloys of various strength groups]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of the Voronezh State Technical University, 2017. vol. 13, no. 2, pp. 132-139. EDN YKJXFX.
11. Zhu Z.X., Marimuthu M., Kuzmikova L. et al. Influence of Ti/N ratio on simulated CGHAZ microstructure and toughness in X70 steels. Science and Technology of Welding and Joining, 2013, vol. 18, no. 1, pp. 45-51.
12. Yan W., Shan Y.Y., Yang K. Influence of TiN inclusions on the cleavage fracture behavior of low-carbon microalloyed steels. Metallurgical and Materials Transactions A, 2007, vol. 38, no. 6, pp. 1211-1222.
13. Echeverría A., Rodriguez-Ibabe J. M. The role of grain size in brittle particle induced fracture of steels. Materials Science and Engineering: A, 2003, vol. 346, no 1-2, pp. 149-158. DOI 10.1016/S0921-5093(02)00538-5. EDN KLIILV.
14. Kozlova I. R., CHudakov E. V., Tret'yakova N. V. [i dr.]. Vliyanie termicheskoj obrabotki na formirovanie struktury i uroven' mekhanicheskih svojstv vysokolegirovannogo titanovogo splava [The effect of heat treatment on the formation of the structure and the level of mechanical properties of a high-alloy titanium alloy]. Voprosy materialovedeniya = Questions of Materials Science, 2019, no.4(100), pp. 28-41. DOI 10.22349/1994-6716-2019-100- 4-28-41. EDN SQBXNP.
15. Ryumshin V. Yu., Chevychelov S. A. Issledovanie vozmozhnosti primeneniya aktiviruyushchego flyusa dlya povysheniya proizvoditel'nosti argonodugovoj svarki zharoprochnogo nikelevogo splava HN60VT [Investigation of the possibility of using an activating flux to increase the productivity of argon arc welding of heat-resistant nickel alloy HN60W]. Svarochnoe proizvodstvo = Welding Production, 2022, no. 9, pp. 45-49.
16. Mihajlov V. I., Kozlova I. R., Kuznecov S. V. [i dr.] Strukturno-fazovye prevrashcheniya pri svarke vysokolegirovannogo splava titana [Structural-phase transformations during welding of high-alloy titanium alloy]. Voprosy materialovedeniya = Questions of Materials Science, 2021, no. 3(107), pp. 63-81. DOI 10.22349/1994-6716-2021-107-3-63-81. EDN UXULMN.
17. Kotel'nikov A.A., Golovenkov A.Yu., Natarov A.S., Ryumshin V.Yu. Programmnoe obespechenie mashinnoj grafiki [Machine graphics software]. Kursk, YUgo-Zapadnyj gos. un-t Publ., 2019. 231 p.
18. Lyasockaya V. S. Termicheskaya obrabotka svarnyh soedinenij titanovyh splavov [Heat treatment of welded joints of titanium alloys]; ed by B.A. Kolacheva. Moscow, Ekomet Publ., 2003. 351 p. EDN QMZLMD.
19. Horev A. I. Osnovy termicheskoj obrabotki i svarki vysokoprochnyh (α+β)- titanovyh splavov [Fundamentals of heat treatment and welding of high-strength (α+β)- titanium alloys]. Tekhnologiya mashinostroeniya = Mechanical Engineering Technology, 2013, no. 8, pp. 5-11. EDN RTKTVD.
Review
For citations:
Ryumshin V.Y., Chevychelov S.A. Causes´ Analysis of Cracks During Welding of High-Pressure Vessel Body Made of Titanium Alloy. Proceedings of the Southwest State University. 2022;26(4):8-21. (In Russ.) https://doi.org/10.21869/2223-1560-2022-26-4-8-21