Load Balancer of Data in a Distributed Network via Nginx Proxy Server
https://doi.org/10.21869/22231560-2022-26-3-98-111
Abstract
Purpose of research. Is investigation of a software method for balancing data in a distributed network via an Nginx proxy server.
Methods. In a computer network load balancer of data is an important network parameter. Due to load balancer in the network, the transmission delay may decrease or increase, the spread from the average jitter value. Thus, load balancer in the network affects the time characteristics and network bandwidth. Load balancer can be managed and optimized in both software and hardware ways. The article focuses on load balancer of data at the application level of applications. Hardware load balancer, which is solved within the framework of network equipment itself, for example, in switches, is briefly considered. This is handled by the queue manager in the Ethernet switch, which manages the bandwidth and queues. Cyclic algorithms are described, as well as an algorithm with time selection of frames in dispatcher of switch that implement effective hardware load balancer. Software load balancer of data in the network is considered. A web server and an Nginx reverse proxy server were used as software load balancer, 3 Docker containers based on Asp.net applications running on different environments.
Results. The network was configured and the cyclic load balancer algorithm was used in the Nginx server. A research of a network with a different number of environments in the network, web servers, data requests was conducted. The cyclic load balancer of data in Nginx is more efficient than the random algorithm, this has been shown during experiments.
Conclusion. Hardware and software load balancer algorithms in a distributed network were considered and investigated. Cyclic load balancer of data has made it possible to increase the network bandwidth, its efficiency and performance.
About the Author
K. I. NikishinRussian Federation
Kirill I. Nikishin Cand. of Sci. (Engineering), Senior Lecturer of Computer Engineering Departament
40 Krasnaya str., Penza 440026
References
1. Olifer V. G., Olifer N. A. Komp'yuternye seti. Printsipy, tekhnologii, protokoly [Computer networks. Principles, technologies, protocols]. St. Petersburg, 2010. 943 p.
2. Opisanie standarta IEEE 802.1q [Description of the IEEE 802.1q standard]. Available at: https://ru.wikipedia.org/wiki/IEEE_802.1Q (accessed 01.06.2022).
3. Nikishin K. I. Mekhanizm upravleniya trafikom real'nogo vremeni v kommutatore Ethernet [The mechanism of management real-time traffic in the switch Ethernet]. Vestnik komp'yuternykh i informatsionnykh tekhnologii = Herald of Computer and Information Technologies, 2015, no. 10, pp. 32–37.
4. McKeown N., Anderson T., Balakrishnan H. et al. Openflow: enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review, 2008, vol. 38, no. 2, pp. 69–74.
5. Kobayashi M., Seetharaman S., Parulkar G., Appenzeller G., Little J., Van Reijendam J., McKeown N. Maturing of OpenFlow and Software-Defined Networking Through Deployments. Computer Networks, 2014, vol. 61, pp. 151–175.
6. Koryachko V. P., Perepelkin D. A. Programmno-konfiguriruemye seti [Software defined networks]. Moscow, Goryachaya liniya – Telekom Publ., 2020, 288 p.
7. Shalimov A. et al. Advanced study of SDN/OpenFlow controllers. Proceedings of the 9th Central & Eastern European Software Engineering Conference in Russia. ACM, 2013.
8. Perepelkin D. A., Byshov V. S. Balansirovka potokov dannykh v programmnokonfiguriruemykh setyakh s obespecheniem kachestva obsluzhivaniya setevykh servisov [Balancing data flows in software defined networks with ensuring the quality of service of network services]. Radiotekhnika = Radio Engineering, 2016, no. 11, pp. 111-119.
9. Nikulchev E. V., Payin S. V., Pluzhnik E. V. Dinamicheskoe upravlenie trafikom programmno-konfiguriruemykh setei v oblachnoi infrastrukture [Dynamic traffic management of software defined networks in cloud infrastructure]. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta = Vestnik of Ryazan State Radio Engineering University, 2013, no. 3 (45), pp. 54-57.
10. Kopetz H. Real-time systems design principles for distributed embedded applications. New York: Springer, 2011, 396 р.
11. Kopetz H., Ademaj A., Grillinger P., Steinhammer K. The Time-Triggered Ethernet (TTE) design. International Symposium on Object-oriented Real-time Distributed Computing, 2005, pp. 22–33.
12. Nikishin K. I., Konov N. N., Pashchenko D. V. [Modelling of systems using TimeTriggered Ethernet]. Informatsionnye tekhnologii i matematicheskoe modelirovanie: materialy XV Mezhdunar. konf. imeni A. F. Terpugova [Information technologies and mathematical modeling. Materials of the XV International Conf. named after A. F. Terpugov]. Tomsk, Tomsk University Publ., 2016, pt 2, pp. 117-122 (In Russ.).
13. Perepelkin D. A. Kontseptual'nyi podkhod dinamicheskogo formirovaniya trafika programmno-konfiguriruemykh telekommunikatsionnykh setei s balansirovkoi nagruzki [Conceptual approach of dynamic traffic generation of software defined telecommunication networks with load balancing]. Informatsionnye tekhnologii = Information Technologies, 2015, vol. 21, no. 8, pp. 602-610.
14. Mekhanov V. B., Kizilov E. A. [Modeling of queue dispatcher by the WRR algorithm with colored Petri nets]. Trudy IX Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii "Novye informatsionnye tekhnologii i sistemy" [Proceedings of the IX International Scientific and Technical Conference "New Information technologies and Systems"], Penza, 2010, pp. 67-73 (In Russ.)
15. Artemov I. V., Konnov M. N., Nikishin K. I. [Analysis of the effectiveness of an adaptive algorithm for forming a virtual timeslot in a network switch]. Trudy Mezhdunarodnogo simpoziuma «Nadezhnost' i kachestvo» [Proceedings of the International Symposium "Reliability and quality"]. Penza, 2020, vol.2, pp. 298-302 (In Russ.).
16. Kizilov E., Konnov N., Nikishin K., Pashchenko D., Trokoz D. Scheduling queues in the Ethernet switch, considering the waiting time of frames. MATEC Web of Conferences, 2016, vol. 44, pp. 01011-p.1–01011-p. 5.
17. Kizilov E. A., Konnov N. N., Mekhanov V. B., Nikishin K. I. [Accounting of the delivery time for control of queue dispatcher in the switch]. Telematika-2014»: tr. XKhI Vseros. nauch.-metod. konf. ["Telematics-2014"Proceedings of the XХI Scientific and Technical Conference]. St. Petersburg : St. Petersburg State University ITMO Publ., 2014, pp. 134-136. (In Russ.)
18. Jensen K. An Introduction to the Practical Use of Coloured Petri Nets. Lectures on Petri Nets II: Applications. Berlin: Springer, 1998, pp. 237-292.
19. Jensen K., Kristensen L.M. Coloured Petri Nets. Modelling and Validation of Concurrent Systems. Berlin: Springer, 2009, 384 р.
20. Nikishin K., Konnov N. Schedule Time-Triggered Ethernet. International Conference on Engineering Management of Communication and Technology, EMCTECH 2020. DOI: 10.1109/EMCTECH49634.2020.9261540.
21. Nikishin K. I., Konnov N. N. Generator trafika Ethernet na osnove tsvetnykh setei Petri [The traffic generator of switch Ethernet using colored Petri nets]. Modeli, sistemy, seti v ekonomike, tekhnike, prirode i obshchestve = Models, Systems, Networks in Economics, Technology, Nature and Society, 2016, no. 1 (17), pp. 299–307.
Review
For citations:
Nikishin K.I. Load Balancer of Data in a Distributed Network via Nginx Proxy Server. Proceedings of the Southwest State University. 2022;26(3):98-111. (In Russ.) https://doi.org/10.21869/22231560-2022-26-3-98-111