Inventory Management in Supply Chains Based on a Linear Discrete System with a Quadratic Quality Criterion
https://doi.org/10.21869/2223-1560-2022-26-3-47-62
Abstract
Purpose of research. To analyze theoretical studies of models and methods used in the theory of inventory management and directions of their practical implementation. To present the problem of optimal inventory management as a discrete control problem. Tasks of this type are formulated in cases where there is a need to form strategies of management of material and production inventories in supply chains, taking into account their organization at a certain time interval. To propose a method for solving the corresponding management problem.
Methods. As a basic model, we consider the process of inventory management in the warehouse, in which a certain balance between the products released from the warehouse into production, released for sale, as well as its residues, which form the inventory of the next period must be fulfilled. The process of inventory management in supply chains during the planning period is based on the procedure of finding the appropriate control action for a linear discrete controlled system with a quadratic quality index. Implementation of control uses the principle of feedback. The computer algebra system Wolfram Mathematica is chosen as a tool for implementing the control.
Results. Within the framework of studying the methods of finding the optimal control, two solution methods were singled out - the method of finding the optimal program control and the method of determining the optimal control according to the feedback principle. In the process of verification of the obtained solution, several model examples with different initial conditions were considered.
Conclusion. The results of testing the proposed discrete model showed that the feedback method makes it possible to quite efficiently solve the inventory management problem with different initial conditions, which is described by a system of difference equations.
About the Authors
E. P. BelousovaRussian Federation
Elena P. Belousova, Cand. of Sci. (Physical and Mathematical), Associate Professor, System Analysis and Management Department
1, University Square, Voronezh 394018
I. N. Bulgakova
Russian Federation
Irina N. Bulgakova, Dr. of Sci. (Economics), Associate Professor, System Analysis and Management Department
1, University Square, Voronezh 394018
References
1. Astraxanceva A. S., Kirillova T. K. Prikladnye aspekty primeneniya elementov logistiki v upravlenii zapasami [Applied aspects of the application of elements of logistics in inventory management]. Regional'nye problemy preobrazovaniya ekonomiki = Regional Problems of Economic Transformation, 2019, no 1(99), pp. 97-102.
2. Kuzneczov N. V., Shishkova E.E. Sovershenstvovanie otdel'nykh elementov sistemy upravleniya zapasami organizatsii [Improvement of individual elements of the organization's inventory management system]. Potrebitel'skaya kooperatsiya = Сonsumer Cooperation, 2019, no 1(65), pp. 36-40.
3. Polue`ktov V.A., Yakutin E.M. Sravnitel'nyi analiz metodov upravleniya zapasami pri neravnomernom sprose [Comparative analysis of inventory management methods for uneven demand]. Organizator proizvodstva= Production Organizer, 2021, no. 1, pp. 106-113.
4. Aleshina A. V., Bulgakov A. L. O nekotorykh osobennostyakh primeneniya instrumentov upravleniya zakupkami i zapasami tovarno-material'nykh tsennostei [On some specifics of the application of procurement and inventory management tools]. Finansovye rynki i banki = Financial Markets and Banks, 2022, no. 7. Available at: https:// cyberleninka.ru/article/n/o-nekotoryh-osobennostyah-primeneniya-instrumentov-upravleniyazakupkami-i-zapasami-tovarno-materialnyh-tsennostey
5. Ry`zhikov Yu.I. Logistika i teoriya ocheredej [Logistics and queuing theory]. Moscow, Lan Publ., 2022. 456 p.
6. Kapustin E. V., Shkurkin A.S. Optimizatsiya parametrov stokhasticheskoi modeli upravleniya zapasami [Optimization of stochastic inventory management model parameters]. Vestn. Tom. gos. un-ta. Upravlenie, vychislitel'naya tekhnika i informatika = Bulletin of Tomsk State University. Management, Computer Science and Informatics, 2019, no. 46, pp. 56-63.
7. Bazhina D. B., Lukinskij V. S., Nikolaevskij N. N. Imitacionnoe modelirovanie cepej postavok na osnove sistemnoj dinamiki [Supply chain simulation based on system dynamics]. Logistika i upravlenie cepyami postavok = Logistics and Supply Chain Management, 2020, no. 1(96), pp. 47-56.
8. Nikitina S. A., Uxobotov V. I. Diskretnye dinamicheskie sistemy s pomekhoi i ikh prilozheniya k resheniyu zadachi upravleniya zapasami [Discrete Dynamic Systems with Interference and their Applications to the Problem of Inventory Management]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Vychislitel'naya matematika i informatika = Bulletin of South Ural State University. Series: Computational Mathematics and Computer Science, 2021, no. 2, pp. 5-19.
9. Nikitina S. A., Uxobotov V. I. Odnomernaya zadacha upravleniya zapasami pri nechetkom sprose [One-dimensional inventory management problem with fuzzy demand]. Trudy Instituta matematiki i mekhaniki UrO RAN = Proceedings of the Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, 2021, vol. 27, no 3, pp.152–162.
10. Sazanova L. A. Diskretnaya model' upravleniya zapasami kak zadacha optimal'nogo upravleniya [Discrete model of inventory management as an optimal management problem]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Ekonomika i upravlenie= Vestnik Voronezh State University. Series: Economics and Management, 2017, no. 3, pp. 184-187.
11. Propoj A.I. Elementy teorii optimal'nykh diskretnykh protsessov [Elements of Optimal Discrete Process Theory]. Moscow, Nauka Publ., 1973. 256 p.
12. Krasovskij N. N. Teoriya upravleniya dvizheniem: Lineinye sistemy [Theory of Motion Control: Linear Systems]. Moscow, Nauka Publ., 1968, 475 p.
13. Albrext E`. G., Sazanova L. A. Sintez optimal'nogo upravleniya v lineinykh diskretnykh sistemakh [Synthesis of Optimal Control in Linear Discrete Systems]. Trudy instituta matematiki i mekhaniki UrO RAN = Proceedings of the Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, 2000, vol. 6, no. 1-2, pp. 477-296.
14. Kalman P.E. Ob obshhej teorii upravleniya [On the General Theory of Control]. Proceedings of the I International Congress on Automatic Control. Moscow, 1961, vol. 2, pp. 56-62.
15. Nadezhdin P.V. O svoistvakh optimal'nykh i lineinykh impul'snykh sistem [On the Properties of Optimal and Linear Pulse Systems]. Izv. AN SSSR = Proceedings of the Academy of Sciences of the USSR, Technical Cybernetics, 1964, vol. 4, pp. 104-112.
16. Gantmaxer F. R. Teoriya matrits [Matrix theory]. Moscow, Nauka Publ., 1966. 576 p.
17. Louson Ch., Xenson P. Chislennoe reshenie zadach metoda naimen'shikh kvadratov [Numerical solution of least squares method problems]. Moscow, Nauka Publ., 1986. 232 p.
18. Voevodin V.V. Lineinaya algebra [Linear Algebra]. Moscow, Nauka Publ., 1980. 400 p.
19. La Salle J.P. The stability and control of discrete processes. N.Y.: Springer-Verlag, 1986. 150 p. (Applied Mathematical Sciences; Vol. 62).
20. Wolfram Mathematica. Available at: https://www.wolfram.com/mathematica/?source=nav (data obrashheniya: 19.06.2022)
Review
For citations:
Belousova E.P., Bulgakova I.N. Inventory Management in Supply Chains Based on a Linear Discrete System with a Quadratic Quality Criterion. Proceedings of the Southwest State University. 2022;26(3):47-62. (In Russ.) https://doi.org/10.21869/2223-1560-2022-26-3-47-62